
Data APIs: Gateway to Data-
Driven Operation and Digital
Transformation

Credit: monsitj

By Andrew J. Brust



Data APIs: Gateway to Data-Driven
Operation and Digital Transformation
06/04/2018

Table of Contents

1. Summary

2. Integration 360: Essential for Data-Driven Enterprises

3. Enter the API

4. The SQL/Database Comfort Zone

5. Data Connectors as APIs

6. Database Metaphor + API = Data API

7. Data APIs: The Path to Digital Transformation

8. Copyright

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

2



While the analytics software has become so
powerful, enterprise data integration needed to
exploit that power has become much harder.

1 Summary

Enterprises everywhere are on a quest to use their data efficiently and innovatively, and to
maximum advantage, both in terms of operations and competitiveness. The advantages of
doing so are taken on authority and reasonably so. Analyzing your data helps you better
understand how your business actually runs.

Such insights can help you see where things can improve, and can help you make
instantaneous decisions when required by emergent situations. You can even use your data to
build predictive models that help you forecast operations and revenue, and, when applied
correctly, these models can be used to prescribe actions and strategy in advance.

That today’s technology allows business to do this is exciting and inspiring. Once such practice
becomes widespread, we’ll have trouble believing that our planning and decision-making
wasn’t data-driven in the first place.

Bumps in the Road

But we need to be cautious here. Even
though the technical breakthroughs
we’ve had are impressive and truly
transformative, there are some
dependencies – prerequisites – that must
be met in order for these analytics technologies to work properly. If we get too far ahead of
those requirements, then we will not succeed in our initiatives to extract business insights from
data.

The dependencies concern the collection, the cleanliness, and the thoughtful integration of the
organization’s data within the analytics layer. And, in an unfortunate irony, while analytics
software has become so powerful, the integration work that’s needed to exploit that power has
become more difficult.

From Consolidated to Dispersed

The reason for this added difficulty is the fragmentation and distribution of an organization’s
data. Enterprise software, for the most part, used to run on-premises and much of its
functionality was consolidated into a relatively small stable of applications, many of which

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

3



shared the same database platform. Integrating the databases was a manageable process if
proper time and resources were allocated.

But with so much enterprise software functionality now available through Software as a Service
(SaaS) offerings in the cloud, bits and pieces of an enterprise’s data are now dispersed through
different cloud environments on a variety of platforms. Pulling all of this data together is a
unique exercise for each of these cloud applications, multiplying the required integration work
many times over.

Even on-premises, the world of data has become complex. The database world was once
dominated by three major relational database management system (RDBMS) products, but that’s
no longer the case. Now, in addition to the three commercial majors, two open source RDBMSs
have joined them in Enterprise popularity and adoption. And beyond the RDBMS world, various
NoSQL databases and Big Data systems, like MongoDB and Hadoop, have joined the on-
premises data fray.

A Way Forward

A major question emerges. As this data fragmentation is not merely an exception or temporary
inconvenience, but rather the new normal, is there a way to approach it holistically? Can
enterprises that must solve the issue of data dispersal and fragmentation at least have a unified
approach to connecting to, integrating, and querying that data? While an ad hoc approach to
integrating data one source at a time can eventually work, it’s a very expensive and slow way to
go, and yields solutions that are very brittle.

In this report, we will explore the role of application programming interfaces (APIs) in pursuing
the comprehensive data integration that is required to bring about a data-driven organization
and culture. We’ll discuss the history of conventional APIs, and the web standards that most
APIs use today. We’ll then explore how APIs and the metaphor of a database with tables, rows,
and columns can be combined to create a new kind of API. And we’ll see how this new type of
API scales across an array of data sources and is more easily accessible than older API types,
by developers and analysts alike.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

4



2 Integration 360: Essential for Data-Driven
Enterprises

Enterprise customers can benefit from a general approach to uniting data from the various
repositories and sources that are currently in use. Uniting the data can provide them with the
much-vaunted 360-degree view of their customers to help them make the best business
decisions and model the best prescriptive actions. And it can do so in a way that removes the
need for enterprise developers to cobble together different solutions on a per-data source
basis.

A unified approach helps amortize the integration effort over the multiple sources the customer
needs to work with, and it puts the customer in the best position to integrate new sources as
they are (inevitably) added to the mix. Essentially it requires only incremental effort to bring on
additional data sources, rather than a start from scratch, ad hoc effort for each one.

In addition to developers and data engineers, such a uniform approach can benefit other
constituencies. For example, teams within the customer organizations who are using self-
service BI tools like Tableau, Qlik, Microsoft Power BI, and TIBCO Spotfire, may be advantaged
by such an architecture and approach.

Whether connecting to an integrated data platform into which all relevant sources are fed, or
connecting directly to those sources, teams with analysis skills who are accustomed to being
self-sufficient can continue to be so in this new, more complex data environment with a robust
integration strategy.

Only with a unified approach to data integration, and a resulting 360-degree view of the
customer, can enterprises hope to establish a data-driven culture. Such a culture
accommodates and encourages both tactical decisions and strategic plans based on an
accurate sense of how the organization is operating and a well-informed sense of how it will run
in the future. Such data-inspired planning and execution is the cornerstone of digital
transformation, and the enterprise’s best hope for making it more than a lofty concept.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

5



3 Enter the API

Data integration and application integration, while not the same, are closely correlated. The
road to application integration has always been the Application Programming Interface (API). For
decades, software developers have made their applications friendly to integration by creating,
publishing, and documenting a public API so that their customers could integrate their apps in
their own specific ways — ways the software developer couldn’t infer in advance.

While APIs were once little more than a technology amenity or utility, today they are strategic.
APIs make applications and services more attractive to enterprise buyers, because their own
developers can integrate the product with in-house applications. This allows those developers
to focus on customization rather than building raw capabilities.

In fact, APIs also help build a product’s ecosystem in general. They tend to attract independent
developers who like to tinker and imbue their own projects with advanced features. But they
also allow software vendors to develop a partner channel with consulting shops that can use
the API to perform custom implementations. This further extends the appeal of the app or
service to enterprise customers.

In both scenarios, APIs provide a path for querying data from the application and mashing it up
with other data the customer may have. That includes data from in-house applications and
databases as well as data from other SaaS applications. As such, APIs provide the gateway to
becoming a data-driven business. But not all APIs are created equal. Let’s explore some of the
nuances now.

Conventional Web APIs

Originally, APIs were developed for specific programming languages to be used by applications
that ran on the same computer or server as the code that used them. In the last fifteen or so
years though, APIs have become more based on Internet standards and, specifically, protocols
developed for the web.

Originally referred to as Web Services and sometimes based on complex protocols, for the last
ten years or so, these have simplified into something called REST APIs. REST stands for
“Representational State Transfer,” but really just indicates a web API approach leveraging the
basic read, write, and delete operations on the web.

Most enterprise SaaS applications have REST APIs nowadays. For any good developer, using a
REST API is fairly straightforward and provides a way to, among other operations, query data

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

6



REST APIs were designed more for data
movement than for efficient querying. As a result,
Business Analysts and Data Scientists are
dependent on developers to get access to
queryable data.

and create certain transactions, all in code, without having to request and invoke these things
manually through the user interface.

REST APIs Are Not Built for Analytics

Using several such APIs can be an
effective way to coalesce data from a
number of sources. But there are
downsides to this approach.

One problem is that each API has its own
documentation and its own conventions. Developers who will use multiple such APIs need to
learn the intricacies of each, and as they switch between them, quickly adjust their minds to the
different metaphors and organization of one versus the other.

Another deficiency in the REST API approach is that it has been designed more for data
movement than for efficient querying. And while it is possible to create a secondary database to
stage and integrate data extracted from various applications and their APIs, there are significant
disadvantages to doing so.

Wholesale data movement is expensive and often poorly-performing. In addition, creating a
copy of the data invokes risks and liabilities. To begin with, the copied and original data can
become out of sync. Replicating granular data can also transgress regulatory standards,
especially if sensitive data fields are involved. Pulling summarized data from an application
avoids these inefficiencies and liabilities, but many REST APIs don’t provide summarization
functionality.

All of this serves as a disincentive for developers to go through the integration process. With
each new data source, there’s risk, unpleasantness, and new complexity. And even to the
extent that developers are willing to withstand this, they’re the only ones who can. Business
analysts and data scientists, by and large, are not in a position to use REST APIs themselves. As
a result, they are dependent on developers to get access to queryable data. This rules out self-
service approaches and is reminiscent of the days of highly-centralized BI.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

7



Figure 1: Deficiencies of REST APIs for data integration

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

8



4 The SQL/Database Comfort Zone

Working with a database is a common scenario in enterprise technology, and is comfortable for
almost any enterprise developer. No matter the programming language, no matter whether it’s a
native app or a web site/web application, the database metaphor is a comfortable one.

The notion of issuing a query (typically in SQL, which is familiar), and getting back a result set of
several columns and either a single row, or a tabular set of rows, is familiar. Creating a
completely new row of data and updating values of certain columns in an existing row are
familiar. Deleting an existing row may or may not be familiar depending on the type of
enterprise and the type of the application in question.

These database metaphors are also familiar to analysts and other self-service BI users. And, on
top of those familiar metaphors and mechanics, the ODBC (open database connectivity) and
JDBC (Java database connectivity) standards – used for creating generic connectors (also
known as “providers” or “drivers”) to multiple databases – are well-understood as well.

These drivers create a standard SELECT/INSERT/UPDATE/DELETE interface that many
programming languages and data tools can use, and they translate those queries and
commands into native instructions the back-end database can understand. The best connectors
make the back-end database do as much of the work as possible, though some will pull back
data from the database and then process it further to meet the client’s commands, whether that
client is a developer’s code or a BI tool.

If there was a way to merge the familiar database paradigm with API functionality, it would solve
many of problems inherent in using REST APIs for data integration. Learning curves would be
less steep, and both analysts and developers alike would be able to work productively.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

9



5 Data Connectors as APIs

Although most ODBC and JDBC connectors talk to databases and most of them issue SQL
queries in the database’s native dialect, things don’t have to work that way. If the back end’s
native protocol is something other than SQL, a connector can still translate the SQL provided to
it into code in the language or command syntax native to the target system.

In the case of some NoSQL databases, this brings a lot of value, because some of them don’t
offer full SQL implementations, and others offer none at all. Some use JavaScript natively, and
others have their own language. Put a standard database connector in front of these databases,
though, and suddenly enterprise developers can use those databases with their existing skill
sets.

Essentially, such connectors place tabular database abstraction layers on top of schema-less
NoSQL databases. And that technique can be extended beyond NoSQL databases, or
databases of any stripe. In fact, database abstraction layers can also be created for applications,
a concept that forms the foundation of a holistic approach to application data integration.

Figure 2: A database abstraction layer for a REST API

Case in Point: Abstracting the REST API using the Database Metaphor

That concept, though, may feel very abstract, so let’s take an example to make it more concrete:
a customer relationship management (CRM) application. Virtually all CRM apps have their own
APIs, and we can imagine that a given SaaS-based CRM product would have a REST API. This,
in fact, could have been any REST API that was built by your in-house developers.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

10



All popular BI tools, such as Tableau, Power BI,
Qlik, Cognos and MicroStrategy, support ODBC
and/or JDBC connectors.

That API might include commands for seeing lists of customers, or lists of opportunities, and
those commands might have parameters whose values could be set to filter the list that came
back. For example, we might be able to use the API to bring back a list of all customers
assigned to a given salesperson, or all opportunities created during the current calendar week.

It’s great that that API is there, and we could use it to bring customer information into our
analysis, and join it with customer data from other sources, in order to get an integrated view of
those customers. But an even better approach would be to translate these APIs into the
database metaphor – ODBC or JDBC connector – instead.

Customers and opportunities could then be modeled as tables, with each of their attributes
modeled as columns in the tables. Instead of using an API command to retrieve lists of those
customers, we could just run a SQL SELECT query, using a WHERE clause to filter the
Salesperson “column” of the Customers “table” or the CreatedDate “column” of the
Opportunities table.

We could then have an application that accepted such SQL requests, queried the CRM system’s
native API via the database abstraction layer, retrieved the results as a set of objects, and
returned all of their data in the form of result sets.

Querying with a WHERE clause on CustomerId or OpportunityId would bring back data for a
specific customer or opportunity, rather than a whole set of them. INSERT queries could be
used to create new customers or opportunities; UPDATE and DELETE commands could be used
to maintain existing such entities.

Ramifications and Replications

Using this approach would mean
developers wouldn’t need to learn the
CRM system’s native API, because the
connector would act as an interpreter
that converted queries from its SQL
abstraction layer into that native API, for the developer.

Analysts/BI users have it even better, because there’s little for them to do, beyond connecting
to the CRM system via the driver. After all, all popular BI tools, such as Tableau, Power BI, Qlik,
Cognos and MicroStrategy, support ODBC and/or JDBC connectors.

Once connected, a list of tables would appear, allowing users to select them, and to start
aggregating numerical information in those tables (like deal size) over various categories (like
salesperson or fiscal quarter) and visualizing the results.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

11



An interesting feature of data connectors is that many of them will inevitably provide database
abstraction layers over applications which, in turn, provide application abstractions over
physical databases. And while that fact may create a temptation to imagine the outer tabular
abstraction layer is actually a direct passthrough to the inner physical database, that is neither a
common nor recommended implementation.

While the physical database and the abstracted data connector interface each feature tables,
rows, and columns, and share the SQL language for programmatic control, they should not be
conflated. The data connector approach provides an abstraction layer, by design, whereas the
database is a physical repository. The connector interface will likely feature a simple schema,
optimized for consumption and intuitive adoption; the physical database will be based on a
more complex design, optimized for performance and efficiency.

The symmetry in primitives, required skillsets, and compatible tools, but with a great difference
in design and mission, merely underscores the versatility and universal applicability of the
tabular data metaphor.

Economies of Scale

With such a compelling model in place, adding other applications (marketing campaign
management, for example) using the same approach avoids the major disruption for developers
to learn additional APIs. Instead, the new application is treated like just another database, with
its own catalog of tables and columns. The same techniques could be used to connect, analyze,
and visualize the data.

For integration, “tables” from each of the applications could be virtually “joined” in order to
integrate comprehensive information about specific individual entities. This could be done in
code, in an analysis tool, or both.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

12



6 Database Metaphor + API = Data API

Database abstraction layers, such as the ones we have been discussing, are true APIs in their
own right. They are perhaps best thought of as data APIs, because they make applications feel
like databases. But data APIs provide the same programming interface capability as REST-
based APIs would. What is different about data APIs is their use of the common framework of
tables, rows, columns, and SQL queries. Contrast this with conventional APIs’ use of arbitrary
frameworks using specific entities and attributes, and an array of callable functions to read or
write to the underlying data.

Interestingly, the “primitives” of data APIs (i.e. SQL SELECT, UPDATE, INSERT, and DELETE)
match the primitives of REST APIs, which are the basic GET, PUT, POST and DELETE verbs of
the web’s HTTP (hypertext transfer protocol) standard, respectively. We mention this not for
purposes of technology trivia, but because it underscores the fact that the primitives of today’s
REST APIs are directly map-able to the data API metaphor.

Figure 3: REST API and Data API primitives are mappable

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

13



Inherited Popularity of Data APIs

The difference is that the data API metaphor has a huge ecosystem of developers, skillsets, BI
tools, and SaaS apps already trained in, and compatible with it. Such a pre-existing ecosystem is
the non-trivial justification for data APIs. Given the widespread existence of skillsets and
compatible tools, using data APIs for data integration is the only real common-sense solution.

Not only are data APIs already data-driven and thus well-suited to facilitate integration for the
purpose of data analysis, but they provide efficiencies that no other approach can touch. Even
those who feel tabular data is not the best or most intuitive metaphor will admit that as a result
of the broad adoption of SQL and database technologies in general, data APIs enjoy a sort of
“incumbency” that cannot be matched by others.

Adoption of the data API approach creates a data-on-demand infrastructure around numerous
applications. The curated collection of connectors creates a single source of truth around an
otherwise eclectic collection of applications, and their otherwise disjoint data sets and
databases. The data API approach takes the fragmented and dispersed collections of data that
are the result of cloud innovation and corrals them into a coordinated collection of data sets that
can be queried and joined in a unified fashion. From entropy comes alignment, manageability,
and a sense of order, without losing functionality or precision.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

14



Custom ODBC or JDBC for REST APIs is a sound
strategy to open your enterprise applications to a
wider audience. Partnering with ISVs who offer
Data API Management solutions can help you
accelerate this journey.

7 Data APIs: The Path to Digital Transformation

Enterprise customers who want true integration of all their data, from their own data estate,
online applications, and partners are best served by using data APIs and the connectors that
implement them.

The advantages are many. To begin with, data APIs are perfectly congruous with the purpose of
their application: data integration. But beyond mere thematic unity, they bring with them the
power of ecosystem, wherein the vast majority of developers, data scientists, and data
engineers already have the skillsets they need to utilize data APIs. BI tools can consume data
APIs directly, rather than relying on developers to use conventional APIs and extract data into a
staging database for downstream BI tool consumption.

The power of volume applies as well. It is
obvious that data APIs work well for one-
off integration requirements. But when
data from numerous applications must be
integrated, the value of data APIs
becomes most evident. That’s because
each additional application requires only
incremental effort to on-board, rather than a full soup-to-nuts adoption of a new API. Ongoing
effort is optimized as well, because moving away from code built around different APIs avoids
jarring context switches and paradigm shifts for developers.

Even applications that support well-adopted REST APIs can benefit from creation of a data API.
This manifests as a custom ODBC or JDBC for REST connectors and is a sound strategy on its
own, opening the enterprise application to a wider audience. Even users of the native REST API
may find a data API useful as a secondary mode of access, depending on the use case.
Partnering with ISVs who offer Data API Management solutions can help you accelerate this
journey.

APIs build ecosystems, and the more readily adoptable an API is, the greater the ecosystem will
be. Data APIs are arguably the most compelling for adoption. Their compatibility with BI tools
allows the capabilities of the API to be browsed visually, even by developers who may plan to
consumer the data API from code.

Acquiring a suite of high-performance connectors provides perhaps the best way for
organizations to build 360-degree views of their customers. Such connectors enable the data
API approach, which is the enterprise’s best bet in taming today’s reality of data dispersal and
fragmentation.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

15



Slaying the data entropy dragon is the key to a well-curated data estate and that, in turn, is the
key to building a data-driven organization. If digital transformation is to be more than a poetic
phrase, if it is to be a tangible, actionable goal for enterprise organizations, then data-driven
operation is critical. Data APIs underly that critical component today and they provide the best
positioning and readiness for adopting new applications and other sources of data into the
future.

© Knowingly, Inc. 2018. "Data APIs: Gateway to Data-Driven Operation and Digital
Transformation" is a trademark of Knowingly, Inc.. For permission to reproduce this report,
please contact sales@gigaom.com.

Data APIs: Gateway to Data-Driven Operation and Digital Transformation
This PDF prepared for: Jamie Poitra (jamie@methnen.com)

16


