
www.progress.com
DATA SHEET

USE LINQ AND ENTITY SQL QUERIES
ON SYBASE 15.5

INTRODUCTION
In this article, we explore how easy it is to connect Microsoft Visual Studio to a Sybase
15.5 server by using Progress® DataDirect® Connect for ADO.NET in conjunction with the ADO.
NET Entity Framework. This configuration lets you fully exploit the power of Microsoft’s
ADO.NET Entity Data Framework when working with Sybase.

 � Visual Studio setup

 � Install and test Progress DataDirect Connect for ADO.NET

 � Create a new console-based project

 � Add the ADO.NET Data Model

 � Create a LINQ-style query

 � Create an Entity SQL query

While new architectures that interact with data are continually arising, one constant
remains: the underlying technologies that make access to information possible remain
as critical as ever. In this article, you’ll see that all communication with the database is
handled within the CLR (Common Language Runtime) leading to better performance,
security, and reliability. What makes Progress DataDirect Connect for ADO.NET such a
compelling choice for this task is that its 100% managed code architecture runs entirely
within the CLR and eliminates the need to install, configure, or maintain any additional
client-side software such as Sybase’s client libraries, as shown in Figure 1.

HIGHLIGHTS:
 � Use Progress® DataDirect®

Connect for ADO.NET with the
ADO.NET Entity Framework

 � Increase performance,
security and reliability

 � Use a Language-Integrated
Query (LINQ) as a cross-
platform mechanism to
access information

 � Retrieve data from multiple
data with Entity SQL

RDBMS

PROGRESS DATADIRECT
100% MANAGED

ADO.NET PROVIDER

.NET APPLICATION

RDBMS

.NET CLR

.NET APPLICATION

UNMANAGED ADO.NET
PROVIDER

100% MANAGED ADO.NET
PROVIDER

.NET CLR

Unmanaged
Code

“MANAGED” ADO.NET
PROVIDER FROM

DATABASE VENDOR

DATABASE VENDOR
CLIENT LIBRARIES

DISADVANTAGES

• Makes calls outside the
 .net CLR
• Version control issues
• Performance bottlenecks
• Security risks
• More complex deployment
• Memory management
 capabilities not available

ADVANTAGES

• Runs within the .NET CLR
• Faster performance
• No dependancy on client
 libraries
• End-to-end security
• No version control issues
 with client libraries
• Faster deployment
• Reduced maintenance

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

2

You’ve probably heard a lot about the ADO.NET Entity Framework. The purpose of this
article is to help you make use of it in your Sybase environment. To illustrate your options,
we’ll work with two examples. In the first instance, you’ll use a Language-Integrated Query
(LINQ) as a common, cross-platform mechanism to access information. In the second
scenario, you’ll see how Entity SQL (which is similar to Microsoft’s Transact-SQL) can
retrieve data from a multi-table relationship.

Finally, to keep things as simple and straightforward as possible, code samples of each of
the examples referenced in this document are available. Click here to download the LINQ
and Entity SQL to Sybase 15.5 code samples.

INSTRUCTIONS
1. Install Visual Studio Professional 2008 SP1 Visual Studio Professional 2010. If

you already have Visual Studio on your computer, make sure to download the .NET
Framework 3.5 SP1 or 4.0; the wizards and other key components won’t work without it.

2. Install Progress DataDirect Connect for ADO.NET Please note that this article was written
with version 3.5. If you are using a newer version, you can follow these same steps as
well.

Make sure that you have administrative privileges on this computer. In addition, before
installing the DataDirect product, make sure you’re running one of the following
operating systems:

 � Windows Server 2008 (all Editions)

 � Windows Vista (all Editions)

 � Windows XP (all Editions)

 � Windows Server 2003 (all Editions)

Progress DataDirect Connect for ADO.NET supports the 32 and 64 bit
versions of these operating systems. Don’t worry: the installer takes
care of this for you automatically.

3. Launch Visual Studio, and create a new project named
EntityFramework_ Console_LINQ_Demo, using a Visual C# Console
Application.

Make sure that you’ve selected .NET Framework 3.5 or 4.0 from the
dropdown on the upper right side of the New Project dialog box. Also,
the source code examples below assume that you used the same
names for your projects as we do in this tutorial

4. Add the ADO.NET Data Model to your project by following these steps:

a. Right-click on the name of your new project.

b. Choose Add-> New Item.

c. Select the ADO.NET Entity Data Model template. This launches the
Entity Data Model Wizard.

d. Choose the Generate from database option.

e. Click on the New Connection button.

f. Fill in details about your Sybase connection as shown in figure 2.
Make sure to select the Progress DataDirect Connect for ADO.NET
Sybase Data Provider.

Figure 2

http://www.progress.com/?cmpid=OTC-PDF
http://forms.progress.com/forms/driverdownload

www.progress.com

3

When you’ve finished, click on the Test Connection button to double-check that
everything is configured correctly. If you receive a Test connection succeeded
message, move on to these steps:

a. Click the Yes, include the sensitive data in the connection string. radio button

b. Check the Save entity connection settings in App.Config box, and enter Entities in
the text box as shown in figure 3.

c. Click Next. The Wizard connects to the database and presents a list of the objects
that you can include in your model.

d. Expand the Tables entry, and place check marks next to the EMPLOYEES (TEST01)
and JOBS (TEST01) entries. Use the default namespace called Model.

Figure 3

e. Click Finish.

The Wizard now connects to Sybase, deciphers the relationships between these
two tables, and then creates a data model based on what it learned. There are a few
important points to bear in mind about the interaction between the Entity Data Model
Wizard and Sybase 15.5:

 � It may take a few minutes for the Wizard to complete its work.

 � The Wizard must be able to infer primary and foreign keys from your Sybase schema.

 � Be on the lookout for any diagnostic messages from Entity Framework and related
Wizard regarding your database structure.

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

4

 � If your Sybase tables use niche data types, such as UDT (user-defined types), you may
receive some messages from the Entity Framework.

 � The Entity Framework mandates that your stored procedure parameters need to be
comprised of supported data types.

When the Wizard completes its work, click the Show all Files icon at the top of the
Solution Explorer. Notice that the Wizard has created numerous references, an App.
Config file, and a data model.

Figure 4 shows the relationship mapping between the two tables as visualized in the
ADO.NET Entity Data Model Designer, the references and other files that were created,
as well the Model Browser:

Figure 4

5. Save your project.

In the upcoming steps, you’ll see how to issue LINQ and Entity SQL queries that use
this model.

6. Create a LINQ-style query

LINQ lets you write queries directly within your application logic, rather than needing to
write SQL itself. This approach is especially compelling when you’re faced with diverse
dialects of SQL, typically provided by different database vendors. For example, you
could use LINQ to write platform-independent queries that will work with disparate
databases such as SQL Server, MySQL, DB2, and Oracle; the Entity Framework will
handle all of the database-specific logic.

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

5

This sample application conducts a simple query of the EMPLOYEES entity that was
discovered by the Entity Data Model Wizard. To run the example, all that’s required is
to open the Program.cs file that was generated for you when you created your project.
Delete all of the code in that file, and then just copy and paste the following code as a
replacement:

using System;
using System.Collections.Generic;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.Objects; namespace EntityFramework _
Console _ LINQ _ Demo
{
class Program
{
 static void Main(string[] args)
 {
 using (Entities EmpEntities = new Entities())
 {
 ObjectQuery<EMPLOYEES> OQemployees = EmpEntities.
EMPLOYEES;
 IQueryable<EMPLOYEES> employeesQuery = from EMPLOYEE
in OQemployees select EMPLOYEE;
 Console.WriteLine(“Employees:”);
 foreach (var emp in employeesQuery)
 {
 Console.WriteLine(emp.LAST _ NAME + “, “ + emp.
FIRST _ NAME);
 }
 Console.ReadLine();
 }
 }
}
}

Once you’ve finished, save your project and then click the green Start Debugging icon
at the top of the main Visual Studio window. This launches the sample application,
which presents a console window with a list of all employees.

7. Create an Entity SQL query.

The second scenario showcases Entity SQL. This is similar in nature to Microsoft’s
Transact-SQL, with some important enhancements, such as inheritance/relationship
support as well as being able to work with collections.

In this example, you’ll explore two additional capabilities: filtering a query, and
retrieving data from related tables. When the Entity Data Model Wizard evaluated your
Sybase database, it determined that there was a relationship between the EMPLOYEES
and JOBS tables. These relationships are displayed graphically, as well as presented to
you via IntelliSense tips when you write your application logic.

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

6

To run this sample application, create a new project and data model. Call your project
EntityFramework_Console_ESQL_Demo and follow steps 3 through 5 above.

Once you’ve completed those steps, replace all of the code in the Program.cs file with
the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.Common;
using System.Data.Objects;
using System.Data.Objects.DataClasses; namespace
EntityFramework _
Console _ ESQL _ Demo
{
class Program
{
 static void Main(string[] args)
 {
 using (Entities jobEntities = new Entities())
 {
 string esqlQuery = @”SELECT j.job _ title, j.EMPLOYEES
FROM Entities.jobs AS j where j.job _ id = ‘IT _ PROG’”;
 try
 {
 foreach (DbDataRecord result in new
ObjectQuery<DbDataRecord> (esqlQuery, jobEntities))
 {
 Console.WriteLine(“Job title {0}: “, result[0]);
 List<EMPLOYEES> list = result[1] as
List<EMPLOYEES>;
 foreach (EMPLOYEES emp in list)
 {
 Console.WriteLine(“ Name {0}, {1} Phone {2}”,
emp.LAST _ NAME, emp.FIRST _ NAME, emp.PHONE _ NUMBER);
 }
 }
 }
 catch (EntityException trouble)
 {
 Console.WriteLine(trouble.ToString());
 }
 catch (InvalidOperationException trouble)
 {
 Console.WriteLine(trouble.ToString());
 }
 }
 Console.ReadLine();
 }
}
}

http://www.progress.com/?cmpid=OTC-PDF

7

www.progress.com

PROGRESS SOFTWARE
Progress Software Corporation (NASDAQ: PRGS) is a global software company that simplifies the development, deployment and management of business applications on-
premise or in the cloud, on any platform or device, to any data source, with enhanced performance, minimal IT complexity and low total cost of ownership.

WORLDWIDE HEADQUARTERS
Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please go to www.progress.com/worldwide

Progress, DataDirect and DataDirect Connect are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S.
and other countries. Any other marks contained herein may be trademarks of their respective owners. Specifications subject to change without notice.

© 2011, 2014 Progress Software Corporation. All rights reserved.

Rev. 11/14

Once you’ve finished, save your project and then click the green Start Debugging icon at
the top of the main Visual Studio window. This launches the sample application, which
retrieves a list of all employees who have a job identifier of IT_PROG.

AUTHOR
Robert Schneider is a Silicon Valley-based technology consultant. He has written five
books and numerous articles on advanced technical topics such as Service Oriented
Architecture (SOA), open source, and relational database design/optimization.

He can be reached at Robert.Schneider@think88.com.

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF
http://www.facebook.com/progresssw
http://www.twitter.com/progresssw
http://www.youtube.com/progresssw
http://www.progress.com/worldwide/?cmpid=OTC-PDF
mailto:Robert.Schneider%40think88.com?subject=

