
1

Introduction

Are you happy with your existing reporting solution for your ERP system? Do you

need to easily create reports using tools like Crystal Reports, Brio, Impromptu,

Microsoft Access, and others? Do you need to quickly analyze data using tools like

Microsoft Access, Excel, Brio, and others?

Do you need to isolate your reports and applications from changes in the

underlying ERP system due to version upgrades, customization and/or data

relocation?

Do you want to use a business view (meaningful table and column names) of your

data during report creation?

ERP systems store their data in relational databases like Microsoft SQL Server,

Oracle, and others. This data is stored in complex schema that consists of

hundreds of tables and thousands of columns. Each site in turn can customize

their ERP system through changes in how the data is stored, addition of fields, and

other customization. This makes it difficult to supply general purpose reporting

tools. Writing applications that go directly to the database schema has limitations:

• Users need to understand how the data is stored in the database –

relations.

• The table/column names can be very cryptic – F1001.

• The data may be stored in physically different databases of the same or

different kinds – requiring distributed query processing.

• Data conversion and look-ups are not possible because of the use of a

single querym limit imposed by most reporting and analysis tools.

• Security and other business logic cannot be enforced.

USING OPENACCESS SDK
TO EXPOSE ERP DATA

Highlights

• Query multiple databases as if
they were one system

• Apps continue to work no matter
how underlying systems change

• Users work with real information,
not hard-tounderstand code
logic

• Process queries on any platform

DATA SHEET

2

Features of an Ideal Solution for
Accessing ERP Data

1. ODBC Compliant - To provide read access to your

application data from off-the-shelf commercial tools

like Microsoft Access, Crystal Reports, Brio, Excel, ADO,

ADO.NET and hundreds of other applications. Options

to support OLE DB and JDBC as required.

2. Flexibility – Work with site-specific implementation of the

ERP system. This means the tables and columns displayed

to the user are based on the current meta-data at the site.

3. User Friendly – ERP systems store data in hundreds

of tables and thousands of columns whose names are

cryptic. Using more meaningful names for the tables

and columns makes it easier for the user to work with

your custom implementation of the ERP system at the

customer’s site. This means the tables and columns

displayed to the user are based on the current meta-data.

4. Data Location Independence – Support the distribution

of data and meta-data in two or more databases. Reports

and applications built to the logical layer exposed by the

custom ODBC driver remain unchanged even when the

physical layout of the data changes.

5. Database Independence – Provide support for the

databases your ERP system supports – Oracle, SQL

Server, AS/400, etc. and any data encoding used for

storing dates and numeric values.

6. Performance – Take full advantage of your data

source’s SQL engine and client/server protocol.

7. Platform Independence – Allow the distributed query

processing to occur on any server platform – including

Solaris, AIX, Linux, HP-UX, NT, and others.

8. Quick Time-To-Market – Quickly get a functional ODBC

driver out to customers based on proven technology.

Quickly Implement a Solution to
Expose ERP Data to End-User
Applications

Progress® DataDirect® OpenAccess™ SDK provides the

framework and pre-built components to quickly allow one

or more data source (s) to be exposed as a single logical

data source that behaves like a SQL compliant RDBMS

database with standardized APIs that include ODBC, OLE

DB and JDBC (see Figure 1).

Figure 1: OpenAccess Framework for Custom ODBC Driver

SQL engine

Custom ODBC

Openaccess ODBC Layer

ERP specific data access code
(RDBMS Vendor's Api or COM)

Schema
Manager

Query
Translation

Data
Access

SQL
SERVER ORACLE AS 400 ACCESS

OpenAccess provides the ODBC API processing,
query parsing, distributed query processing,

and aggregation.

Customized code you implement to expose the
schema, perform any query translation and

data transformations, and execute the query
using your ERP or RDBMS specific API.

3

OpenAccess components provide the ODBC, JDBC, or

OLE DB APIs, SQL parsing, distributed query processing,

aggregation, and a client/ server protocol (if required).

These components interact with the Interface Provider

code that is implemented for a specific ERP system.

The Interface Provider code implements the schema

management, any required query translation, security, and

the execution of the query against the data source.

End users query the data sources as if they were a single

database using SQL through ODBC, OLE DB or JDBC.

Queries are parsed and executed against each of the data

sources in real-time and then the results are combined into

a single result set and sent back to the client.

The ODBC driver developed using OpenAccess SDK can

enforce all the business rules, data conversions, security,

and data configurations supported by your ERP system.

The ODBC driver can be developed to make use of an

existing API supported by the ERP system or to go directly

to the database(s) where the data is stored. In either case

the user is exposed a logical view of the data that shows

meaningful names for the table names and columns.

With OpenAccess SDK, the amount of custom code

required is minimal. OpenAccess handles all the ODBC

related issues and handles all distributed joins where

required. The custom code, which we refer to as the

Interface Provider (IP), consists of the implementation of

a data access module, a schema management module,

and a translation layer. The schema manager module is

responsible for using your meta-data to expose a schema.

OpenAccess is shipped with a data access module for

working with Oracle, SQL Server, Microsoft Access, and

AS/400 through the vendor’s ODBC connectivity.

Case Study – ODBC Driver for Oracle
ERP System

The EnterpriseOne product from Oracle (formerly OneWorld

from JD Edwards) is an example of an ERP system that has

many of the characteristics addressed at the beginning of

this use case. Unity Enterprise Solutions used OpenAccess

SDK to implement an ODBC driver that can support the use

of the Object Configuration Manager tables (meta-data)

for exposing the schema and for accessing the data. This

product is being marketed as jdeDirect ODBC driver.

SQL engine

JDE-ODBC Direct

Openaccess ODBC Layer
(ODBC Api, Distributed Query Processing,

and Aggregation)

Database Specific ODBC Drivers
(Microsoft, Oracle, Access, SQL Server)

Schema
Manager

Translation
and Security

ODBC Data
Access Module

SQL
SERVER ORACLE AS 400 ACCESS

Figure 2: Architecture for ERP-ODBC Direct Implementation

4

Conclusion

This use case provides an overview and details of using

OpenAccess SDK to implement a custom ODBC driver

for your ERP system. OpenAccess also supports the

development of OLE DB, JDBC, and .NET drivers. All

three standards are based on consuming the IP that is

developed to adapt your data source to OpenAccess. So

if you use OpenAccess to implement ODBC, it’s just a

matter of linking with the OLE DB flavor of OpenAccess

to get OLE DB, and linking with the JDBC flavor of

OpenAccess to get JDBC – no code changes.

Progress and Progress DataDirect are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or
affiliates in the U.S. and/or other countries. Any other trademarks contained herein are the property of their respective owners.

© 2016 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
Rev 16/05

About Progress

Progress (NASDAQ: PRGS) is a global leader in application development, empowering the digital transformation organizations

need to create and sustain engaging user experiences in today’s evolving marketplace. With offerings spanning web, mobile and

data for on-premises and cloud environments, Progress powers startups and industry titans worldwide, promoting success one

customer at a time. Learn about Progress at www.progress.com or 1-781-280-4000.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095

On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please go to www.progress.com/worldwide

The architecture chosen for this application was a local

implementation in which the OpenAccess ODBC component

runs on the desktop and uses the ODBC drivers for Oracle,

SQL Server, AS/400, and Microsoft Access to perform the

actual data access. The Schema Manager module was

designed to read the OCM and use it to expose the tables

and columns for the selected user and environment.

The Schema Manager module was custom implemented

to understand the Oracle EnterpriseOne data dictionary

and to provide this information to the OpenAccess layer.

The Data Access module used was the ODBC module

that comes standard with OpenAccess. The translation

layer was implemented to support row-based security and

user defined codes. In Figure 2 below the orange colored

components are provided with OpenAccess SDK. The

RDBMS vendors supply the white colored components. The

aqua colored box represents the code custom written to

adapt OpenAccess to EntepriseOne schema management.

Your Development Effort

1. Design and code the schema manager (15 days)

2. Enhance the data access module as required (10 days)

3. Do your QA (5 days)

4. Package up for distribution (2 days)

Expected time of completion: 32 man days

Expected time for working prototype: 5 days

