
www.progress.com

OPENACCESS™
.NET SOFTWARE
DEVELOPMENT KIT

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com

www.progress.com

TABLE OF CONTENTS

Overview 1

OpenAccess .NET SDK Architecture 2

.NET Data Providers 2

ADO.NET Connections 3

Connection String Format 3

Closing The Connection 4

ADO.NET Commands 4

Obtaining a Single Value 5

Modifying Data 7

Using Stored Procedures 9

http://www.progress.com/?cmpid=OTC-PDF

1

www.progress.com

OVERVIEW
The objective of the Progress® DataDirect® OpenAccess™ SDK has always been to provide a
solution for enabling standardized access to any data on any platform. With the upcoming
release of Microsoft’s .NET platform Progress Software has been formulating its strategy to
enable access from ADO.NET to any data source. This document describes how OpenAccess
allows you to provide access to your data through ADO.NET using our technology.

OpenAccess is designed to hide the developer from the complexities of SQL, ODBC, OLE DB,
JDBC, .NET, and networking. The developer focuses on writing a set of functions that deal with
access to his or her data. OpenAccess then handles the details of exposing this data through
ODBC, OLE DB, JDBC, or .NET without any additional coding. Our solution for .NET forces you to
learn nothing new about Microsoft Windows or .NET. You simply write an Interface Provider to
link your data source to our SQL engine. Your code can run on the .NET platform or on any of our
other supported platforms. We plug into ADO.NET through native .NET Provider. This means that
you can use our .NET SDK to create a fully functional .NET Provider for your data source. Within
days you can have a .NET Provider to your data source.

ADO.NET works with provider developed using OpenAccess .NET provider SDK. In this document
we have given examples of ADO.NET tested with OpenAccess .NET provider SDK. Please contact
support@atinet.com or sales@atinet.com for more information. You can read more about our
products at http://www.odbcsdk.com

The Microsoft ADO.NET is supported on Microsoft® Windows® 2000, Microsoft® Windows NT®
4 with Service Pack 6a, Microsoft® Windows® Millennium Edition, Microsoft® Windows® 98,
Microsoft® Windows® SE, and Microsoft® Windows® 95. Use of the native .NET Data Provider
requires the installation of Runtime .NET Framework.

http://www.progress.com/?cmpid=OTC-PDF
mailto:support%40atinet.com?subject=
mailto:sales%40atinet.com?subject=

2

www.progress.com

OPENACCESS .NET SDK ARCHITECTURE
Figure 1 shows interaction between a .NET application and the Progress® DataDirect®
OpenAccess™ .NET Provider. In client/server configuration, the OpenAccess .NET Provider
is shipped as a shrink-wrapped component that is installed on Windows platforms. It
communicates with the OpenRDA Server to execute the queries on the server platform. In local
configuration, the OpenAccess .NET Provider library is linked with the DAM and your IP to build a
ADO.NET compliant .NET provider specific for your data source.

Windows, UNIX,
OpenVMS, OS/390

Windows, UNIX,
OpenVMS, OS/390

TCP/IP

Supplied by ATI

Developed by the SDK user

Third party component

OpenRDA .NET Provider

TCP/IP

OpenRDA Sever

SCADAOODBMS

DAM (SQL Engine)

Interface Provider

.NET Application

ISAM
RDBMS

Figure 1: Client/Server Architecture

Windows, UNIX,
OpenVMS, OS/390

Supplied by ATI

Developed by the SDK user

Third party component

OpenRDA .NET Provider

SCADAOODBMS

DAM (SQL Engine)

Interface Provider

.NET Application

ISAM
RDBMS

Figure 2: Local Architecture

.NET DATA PROVIDERS
A .NET data provider is used for connecting to a database, executing commands, and retrieving
results. Those results are either processed directly, or placed in an ADO.NET DataSet in order
to be exposed to the user in an ad-hoc manner, combined with data from multiple sources, or
remoted between tiers. The .NET data provider is designed to be lightweight, creating a minimal
layer between the data source and your code, increasing performance while not sacrificing
functionality. There are four core objects that make up a .NET data provider:

Object Description

Connection Establishes a connection to a specific data source.

Command Executes a command at a data source. Exposes Parameters and
can enlist a Transaction from a Connection.

DataReader Reads a forward-only, read-only stream of data from a data source.

DataAdapter Populates a DataSet and resolves updates with the data source.

http://www.progress.com/?cmpid=OTC-PDF

3

www.progress.com

ADO.NET CONNECTIONS
In ADO.NET you use a data Connection object to connect to a specific data source. To connect to
a native data source, use the OaConnection object of the OpenAccess .NET Data Provider.

The following example shows how to do connections to OpenAccess Local .NET DB3 database.

[Visual Basic]
Imports System
Imports System.Data
Imports OpenRDA.Data.OaClient
Imports Microsoft.VisualBasic

Public Class connect

 Public Shared Sub Main()
 Dim oaConn As OaConnection = New OaConnection(“Data
Source=test _ local;UserId=pooh;Password=bear”)

 oaConn.Open()
 Console.WriteLine(“Connected to database” & “test _ local”);
 oaConn.Close()
 End Sub
End Class

[C#]
using System;
using System.Data;
using OpenRDA.Data.OaClient;

class Connect
{
 public static void Main()
 {
 OaConnection oaConn = new OaConnection(“Data Source=test _ local;User
Id=pooh;Password=bear;”);

 oaConn.Open();
 Console.WriteLine(“Connected to database” + “test _ local”);
 oaConn.Close();
 }
}

CONNECTION STRING FORMAT
For the OpenAccess native .NET Data Provider, the connection string format is identical to the
connection string format used in ADO, with the following exceptions:

 � The Provider keyword is not required.

 � The URL, Remote Provider and Remote Server keywords are not supported.

http://www.progress.com/?cmpid=OTC-PDF

4

www.progress.com

CLOSING THE CONNECTION
You must always close the Connection when you are finished using it. This can be done using
either the Close or Dispose methods of the Connection object. Connections are not implicitly
released when the Connection object falls out of scope or is reclaimed by garbage collection.

ADO.NET COMMANDS
After establishing a connection to a data source, you can execute commands and return results
from the data source using a Command object. A Command object can be created using the
Command constructor, or by calling the CreateCommand method of the Connection object.
The Command object exposes several Execute methods you can use to perform the intended
action. When returning results as a stream of data, use ExecuteReader to return a DataReader
object. Use ExecuteScalar to return a singleton value. Use ExecuteNonQuery to execute
commands that do not return rows. The following example demonstrates how to format a
Command object to return a list of Employees from the OpenAccess Local .NET DB3 database.

[Visual Basic]

Imports System
Imports System.Data
Imports OpenRDA.Data.OaClient
Imports Microsoft.VisualBasic

Public Class Query
 Public Shared Sub Main()
 Dim oaConn As OaConnection = New OaConnection(“Data
Source=test _ local;UserId=pooh;Password=bear”)

 Dim oaCMD As OaCommand = oaConn.CreateCommand()
 oaCMD.CommandText = “SELECT empno, ename FROM emp”
 oaConn.Open()
 Dim myReader As OaDataReader = oaCMD.ExecuteReader()
 Dim schemaTable As DataTable = myReader.GetSchemaTable()
 Dim myRow As DataRow

 For Each myRow In schemaTable.Rows
 Console.Write(myRow(schemaTable.Columns(“ColumnName”).ToString()) &
vbTab)
 Next
 Console.WriteLine()
 Do While myReader.Read()
 Console.WriteLine(“{0}” & vbTab & “{1}”, myReader.GetInt32(0),
myReader.GetString(1))
 Loop

 myReader.Close()
 oaCMD.Dispose()
 oaConn.Close()
 End Sub
End Class

http://www.progress.com/?cmpid=OTC-PDF

5

www.progress.com

[C#]

using System;
using System.Data;
using OpenRDA.Data.OaClient;

class Select
{
 public static void Main()
 {
 OaConnection oaConn = new OaConnection(“Data Source=test _ local;User
Id=pooh;Password=bear;”);

 OaCommand oaCMD = oaConn.CreateCommand();
 oaCMD.CommandText = “SELECT empno, ename FROM emp”;

 oaConn.Open();

 OaDataReader myReader = oaCMD.ExecuteReader();

 DataTable schemaTable = myReader.GetSchemaTable();

 foreach (DataRow myRow in schemaTable.Rows)
 {
 Console.Write(myRow[schemaTable.Columns[“ColumnName”]] + “\t”);
}
 Console.WriteLine();

 while (myReader.Read())
 {
 Console.WriteLine(“{0}\t{1}”, myReader.GetInt32(0),
myReader.GetString(1));
 }
myReader.Close();
oaCMD.Dispose();
oaConn.Close();
}
}

OBTAINING A SINGLE VALUE
You may need to return information from a database that is not in the form of a table or data
stream. For example, you may want to return a single value such as the result of Count(*) or
Avg(Salary). The Command object provides the capability to return single values using the
ExecuteScalar method. The ExecuteScalar method returns the value of the first column of the
first row of the result set as a scalar value.

http://www.progress.com/?cmpid=OTC-PDF

6

www.progress.com

The following example returns the number of records in a EMP table using the Count aggregate
function.

[Visual Basic]

Imports System
Imports System.Data
Imports OpenRDA.Data.OaClient
Imports Microsoft.VisualBasic

Public Class OneValue

 Public Shared Sub Main()
 Dim oaConn As OaConnection = New OaConnection(“Data
Source=test _ local;UserId=pooh;Password=bear”)

 Dim oaCMD As OaCommand = oaConn.CreateCommand()
 oaCMD.CommandText = “SELECT count(*) FROM emp”

 oaConn.Open()

 Dim count As Int32 = oaCMD.ExecuteScalar()
 Console.WriteLine(vbNewLine & “Total records={0}”, count)

 oaCMD.Dispose()
 oaConn.Close()
 End Sub
End Class

[C#]

using System;
using System.Data;
using OpenRDA.Data.OaClient;

class OneValue
{
 public static void Main()
 {
 OaConnection oaConn = new OaConnection(“Data
Source=test _ local;User Id=pooh;Password=bear;”);

 OaCommand oaCMD = oaConn.CreateCommand();
 oaCMD.CommandText = “SELECT count(*) FROM emp”;
 oaConn.Open();
 Int32 count = (Int32)oaCMD.ExecuteScalar();
 Console.WriteLine(“\nTotal records={0}”, count);
 }
}

http://www.progress.com/?cmpid=OTC-PDF

7

www.progress.com

MODIFYING DATA
Using a .NET data provider, you can execute data manipulation language (DML) statements
(e.g. INSERT, UPDATE, DELETE). These commands do not return rows as a query would, so the
Command object provides an ExecuteNonQuery method to process them.

[Visual Basic]
Imports System

Imports System.Data
Imports OpenRDA.Data.OaClient
Imports Microsoft.VisualBasic

Public Class Insert

 Public Shared Sub Main()
 Dim oaConn As OaConnection = New OaConnection(“Data
 Source=test _ local;UserId=pooh;Password=bear”)
 Dim insertStr As String = “INSERT INTO EMP (EMPNO, ENAME) Values(101,’OA.NET’)”

 oaConn.Open()

 Dim oaCMD As OaCommand = New OaCommand(insertStr, oaConn)
 Dim recordsAffected As Int32 = oaCMD.ExecuteNonQuery()

 Console.WriteLine(“Rows affected={0}”, recordsAffected)

 oaCMD.Dispose()
 oaConn.Close()

 End Sub
End Class

http://www.progress.com/?cmpid=OTC-PDF

8

www.progress.com

[C#]

using System;
using System.Data;
using OpenRDA.Data.OaClient;

class Insert
{
 public static void Main()
 {
 OaConnection oaConn = new OaConnection(“Data Source=test _ local;User
Id=pooh;Password=bear;”);

 oaConn.Open();

 string insertStr = “INSERT INTO EMP (EMPNO, ENAME) Values(101,’OA.NET’)”;
 OaCommand oaCMD = new OaCommand(insertStr,oaConn);
 Int32 recordsAffected = oaCMD.ExecuteNonQuery();

 Console.WriteLine(“Rows affected={0}”, recordsAffected);

 oaCMD.Dispose();
 oaConn.Close();
 }
}

http://www.progress.com/?cmpid=OTC-PDF

9

www.progress.com

USING STORED PROCEDURES
Stored procedures offer many advantages in data-driven applications. Database operations
can be encapsulated in a single command, optimized for best performance, and enhanced
with additional security. While a stored procedure can be called by simply passing the stored
procedure name followed by parameter arguments as an SQL statement, using the Parameters
collection of the ADO.NET Command object enables you to more explicitly define stored
procedure parameters.

To call a stored procedure, set the CommandType of the Command object to StoredProcedure.
Once the CommandType is set to StoredProcedure, you can use the Parameters collection to
define parameters.

[Visual Basic]

Imports System
Imports System.Data
Imports OpenRDA.Data.OaClient
Imports Microsoft.VisualBasic

Public Class StoreProc

 Public Shared Sub Main()
 Dim oaConn As OaConnection = New OaConnection(“Data
Source=test _ local;UserId=pooh;Password=bear”)
 Dim procStr As String = “refresh _ db”

 oaConn.Open()

 Dim oaCMD As OaCommand = New OaCommand(procStr, oaConn)
 oaCMD.CommandType = CommandType.StoredProcedure
 Dim recordsAffected As Int32 = oaCMD.ExecuteNonQuery()

 Console.WriteLine(“Rows affected={0}”, recordsAffected)

 oaCMD.Dispose()
 oaConn.Close()

 End Sub
End Class

http://www.progress.com/?cmpid=OTC-PDF

10

www.progress.com

PROGRESS SOFTWARE
Progress Software Corporation (NASDAQ: PRGS) is a global software company that simplifies the development, deployment and management of business applications on-
premise or in the cloud, on any platform or device, to any data source, with enhanced performance, minimal IT complexity and low total cost of ownership.

WORLDWIDE HEADQUARTERS
Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please go to www.progress.com/worldwide

Progress, DataDirect and OpenAccess are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and other
countries. Any other marks contained herein may be trademarks of their respective owners. Specifications subject to change without notice.

© 2006-2014 Progress Software Corporation. All rights reserved.

Rev. 9/14

[C#]

using System;
using System.Data;
using OpenRDA.Data.OaClient;

class StoreProc
{
 public static void Main()
 {
 OaConnection oaConn = new OaConnection(“Data Source=test _ local;User
Id=pooh;Password=bear;”);

 oaConn.Open();

 string procStr = “refresh _ db”;
 OaCommand oaCMD = new OaCommand(procStr,oaConn);
 oaCMD.CommandType=CommandType.StoredProcedure;
 Int32 recordsAffected = oaCMD.ExecuteNonQuery();

 Console.WriteLine(“Rows affected={0}”, recordsAffected);

 oaCMD.Dispose();
 oaConn.Close();
 }
}

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF
http://www.facebook.com/progresssw
http://www.twitter.com/progresssw
http://www.youtube.com/progresssw
http://www.progress.com/worldwide/?cmpid=OTC-PDF

