
www.progress.com
DATA SHEET

ACCESS AN OBJECT
WRAPPER USING ODBC

REQUIREMENTS FOR ACCESSING DATA STORED IN AN OBJECT-
ORIENTED DATABASE
This tutorial assumes you have an immediate requirement to access data stored in an
object-oriented database using ODBC, OLE DB, and/or JDBC from a PC or a UNIX client. The
database is a persistent object-oriented system that has classes and instances.

Following are some of the requirements:

�� Access objects of any class as a table - The table view will show the attributes of the
specified class and all its parents.

�� Support dynamic schema - The classes in the database change from one installation
to another and maybe over time (similar to how Oracle database can support different
schema for different applications).

�� Support one or more of the following standards:

>> ODBC compliant access from Windows or UNIX - Allows standard ODBC
compliant applications to access the data.

>> OLE DB compliant access from Windows – Allows standard OLE DB compliant
applications to access the data.

>> JDBC compliant access from Windows or UNIX - Allows standard ODBC compliant
applications to access the data.

�� Client/server - Process database access on the database server platform.

�� Use object-oriented database system access mechanisms - Support optimized
execution of joins by using the pointer references inherent in OODBMS.

HOW TO QUICKLY PROCESS SQL QUERIES AGAINST AN OBJECT-
ORIENTED DATABASE SYSTEM
The Progress® DataDirect® OpenAccess™ SDK allows vendors to provide an ODBC, OLE DB,
or JDBC interface to a proprietary non-SQL database by implementing a small set of
functions. Here we will explain how an Interface Provider (IP) can be designed to work with
the Database Access Manager (DAM) to process SQL queries against an object-oriented
database system (also referred to as OODBMS in the following discussions).

The main topics covered are:

�� Mapping of object-oriented constructs (classes, instances and references) to SQL
constructs

�� Exposing the mapped schema to the DAM

�� Writing the IP code to implement SELECT type of query on a table EMP

�� Writing the IP code to implement an optimized join

HIGHLIGHTS:
�� Map object-oriented

constructs to SQL
constructs

�� Expose mapped schema
to the Database Access
Manager (DAM)

�� Implement SELECT queries

�� Optimize joins

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

2

MAPPING CLASSES TO TABLES
Mapping of object-oriented entities like classes and instances into SQL entities like tables
and relationships is possible. The table below describes how various object oriented-
entities map to SQL entities.

Object Oriented Entity SQL Entity

Class A table that contains all the attributes of the class and
its parents as columns with the same type and name.
Attributes referencing other objects are simply mapped
as foreign keys to a table containing objects of that
class. Attributes that are classes can be expanded out
recursively into columns (an attribute of a class type
that contains X and Y members is mapped to columns X
and Y) or can be treated as foreign key references.

Instance An instance is mapped as a row in a table of the class
it belongs to. Attribute values are mapped to column
values. Pointer type attributes take on an undefined
value. These columns are only to be used for doing joins.

Pointer Reference One object can reference another object or objects
through pointers. For example, if a class DEPT contains
as an attribute a set of pointers to EMP, then we would
have a table DEPT and a table EMP. A column empObjId in
the DEPT table would point to the associated set of EMP
objects and would be marked as a foreign key. The user
gets all the members of the set by doing a join between
the DEPT and EMP table.

Table 1: Mapping of OODBMS concepts to relational concepts

We will clarify these concepts by mapping classes EMP and DEPT.

EXAMPLE CLASSES
First, let’s define the classes to be used for the example:

Class EMP{

int ID;

char name[32];

int age;

DEPT *dept; // reference to a department

}

Class DEPT{

int ID;

char name[64];

char desc[255];

EMP *emp[]; // set of employees

}

Note that the EMP class references one department and the DEPT class references one or
more EMP.

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

3

For this example we want to execute the following two queries:

1.	 List all employees in a given department

2.	 List the department to which the specified employee belongs

An application would list all employees under a department by retrieving an object of
type DEPT and then iterating through the emps[] array of pointers. It would find the
department to which an employee belongs by retrieving the employee object and then
following the department reference.

MAPPING OF THE EXAMPLE OBJECT MODEL TO RELATIONAL
Now that we have defined an object model to relate EMP and DEPT, let’s derive a relational
model. The rules are as defined in Table 1. First, map every class to a table and all simple
attributes to columns. Then, handle any pointer references with foreign keys. Also, a
decision must be made as to how classes contained in other classes as attributes are
treated. In some cases they can be expanded out to columns of the table (class) in which
it is contained. In other cases it may be changed to a foreign key into a table of that class.
This decision affects how many tables the end user has to deal with and how complex the
queries appear (not necessarily how efficiently they can be executed). Below we define
each of the columns in the table by

Table EMP:

Column Name Data Type Description

ObjID NUMBER(38) Unique identifier of this object

ID NUMBER(38) Employee’s ID

NAME VARCHAR(32) Employee’s name

AGE NUMBER(38) Employee’s age

dept_ObjID NUMBER(38) Foreign key to the Employee’s department.
This column is a place holder for the dept
object pointer.

Table DEPT:

Column Name Data Type Description

ObjID NUMBER(38) Unique identifier of this object

ID NUMBER(38) Department’s ID

NAME VARCHAR(64) Department’s name

DESC VARCHAR(255) Department’s description

emp_ObjID NUMBER(38) Foreign key to the Employees in this
department. This column is a place holder for
the emp[] set of pointers.

Each table exposes a column ObjID to contain the unique object identifier. This column
is meant to be used only for performing joins and should not be saved for other use.
An object instance (a row) should be selected by specifying a query on one of the other
attributes. Not that the DEPT table has only one column for the associated employee id.
The value of this column is undefined when a select query is done on the DEPT table. It
should only be used to perform joins between the EMP and DEPT tables.

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

4

With this model, an application can retrieve all the employees belonging to the
engineering department with a query:

select * from EMP,DEPT where DEPT.NAME=‘Engineering’ and DEPT.

empObjID=EMP.ObjID;

This is a join between the DEPT and EMP table. It can be optimally executed by retrieving
the DEPT object with NAME=‘Engineering’ and then iterating through all the emp[]
pointers. A less optimal execution is to retrieve rows from both EMP and DEPT tables and
then to perform a cartesian product.

An application can retrieve the department to which an employee belongs with a query:

select DEPT.NAME from EMP,DEPT where EMP.NAME=‘Joe Smith’ and

EMP.dept _ ObjID=DEPT.ObjID;

This is a join between the DEPT and EMP table. It can be optimally executed by retrieving
the EMP object with NAME=‘Joe Smith’ and then following the dept reference to retrieve
the department name. A less optimal execution is to retrieve rows from both EMP and
DEPT tables and then to perform a Cartesian product.

To summarize, the client will view all classes as tables and all instances of those classes
as rows within those tables. All is-part-of relationships will be handled through foreign
keys. All set attributes will be handled through foreign keys. In the next section we
discuss how this table view is exposed to the DAM so that it can perform the parsing and
execution of SQL queries.

SCHEMA DATABASE
This section details how a table is exposed to the DAM to allow it to parse a query and
execute it.

The DAM supports both static and dynamic schema. For static schema, the developer
defines a Schema Database. This database consists of the tables named TABLES and
COLUMNS stored in dBase III files. The COLUMNS table lists all columns accessible on this
database server. It includes the column name, type, description, and other information.
The TABLES table lists all the tables and the interface (IP) responsible for accessing it. The
DAM uses this information to associate a table to the IP that will do the data access. There
is no limit on the number of tables or columns that can be defined. Other tables contain
index, primary key and foreign key information.

Maybe a more suitable schema management scheme is to use our dynamic schema
capability in which each IP will have the option of registering all the tables and columns
at run-time. Conceptually this will result in the same information as now but in a more
dynamic way. An IP will do this by exposing implementation of schema functions. Dynamic
schema generation requires the logic to map from native schema to relational schema
to be contained in your code. This may not be trivial if you want flexibility in how your
database schema is presented.

The DAM uses the schema information to:

�� Expose the data dictionary to the client application

�� To parse SQL statements, determine which IP to call for each of the referenced table,
and to build a structure in memory describing each of the columns referenced in the
query in terms of its type and name

�� Optimize joins

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

5

The data dictionary is used by desktop application development tools to allow users
to view and select tables from the database. ODBC specifies a specific format this
information is to be returned in. The OpenAccess ODBC driver accesses this information
from the Schema Database managed by the DAM.

In order to execute a query, the DAM finds out each table and column referenced by the
query. This information is then passed to the IP to allow it to read the required columns.
For example, a query to the table EMP of the form:

select * from EMP;

results in the DAM building a list of columns that contain all the columns in table EMP as
defined in the Schema Database. This list of columns is obtained by looking up all columns
in the Schema database table COLUMNS where table name is EMP. This list of columns and
the table name will then be passed to the function exposed by the IP to support SELECT
operation. How this information is used is covered in the next section.

IMPLEMENTING SELECT ON EMP
Once the schema of the database is determined and the Schema Database is set up, the
IP can be coded to support the required functions. Only the functions to implement the
INIT, CONNECT and EXECUTE operations are required for this simple example (please
refer to the OpenAccess SDK Programmer’s Guide for more details). Each IP registers the
supported operations by placing a pointer to a function in an array of function pointers
associated with that IP. To execute a SELECT, the DAM simply executes the function
pointed to by the slot for the EXECUTE operation and passes this function the table name
and the list of columns to be accessed. This function then performs the reading and
processing of rows as described in the OpenAccess SDK Programmer’s Guide.

Some key points to note are:

�� The IP only exposes one entry point independent of the number of tables it contains.
For example, only one function pointer for EXECUTE is registered by the IP. It’s up to
this IP to use the table name and the operation type information passed in order to
perform the necessary processing (the DAM passes in all the required information).

�� The functions in IP that do the data processing can use the list of columns passed in by
the DAM to build the required row. This means that one routine written to implement
the SELECT type of operations should be able to process SELECT requests for all tables
and for any sub-set of that table’s columns.

The design of the db_oodb_execute() function, which will be registered in the EXECUTE
slot for the IP, is intended to support access to any table in the OODBMS database. The
diagram and the explanation below assume no optimization to keep it simple (refer to the
Details of DAM and IP Processing for more details).

The high-level processing performed by the DAM and the IP to execute a SELECT query
from the HP database is shown in Figure 1. The steps are:

1.	 First the query is received by the DAM and parsed into an expression tree.

2.	 From the SQL statement, the type of query is determined and the SELECT function
associated with the select operation (db_oo_select) is called.

3.	 The IP looks at the table name and columns list input to determine what class of object
to access and what attributes to read.

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

6

4.	 The IP steps through each of the instances of the identified class and evaluates
against the expression tree by calling a function in the DAM.

5.	 If the expression is true for the given row of data, it is added to the result set by calling
a function in the DAM.

6.	 Steps 4-5 are repeated until all rows from the database have been read.

7.	 The DAM packages up the results set and sends it to the client.

Figure 1: SELECT Processing

OPTIMIZING JOINS
The previous section detailed the steps to execute a simple select statement. An IP can
implement the joins itself to assist the DAM in processing joins. When processing a table,
the IP can find out if it is a parent table of other tables. If this is the case, then it can
decide to build the child rows as it builds each of the current table rows. This is where the
IP developer can take advantage of pointer references between objects (tables) supported

select * from CV_INFIDELIVERIES where INFDELIVERYID = 001;

Parse SQL

table name, list of columns

Row of data

Row of data

T/F

Results

Y

Y

N

N

TRUE

db_oo_select()
Call select

function in IP

Return result
set to client

Expression
Evaluator Evaluate

against
expression

More
Data

Result set
manager

Result set

Add the row
to result set

Read a row of data from
specified table. Include

columns specified in the
columns list.

Expression
Tree

100% MANAGED ADO.NET PROVIDER OO INTERFACE PROVIDER

Your
API

OODBMS

http://www.progress.com/?cmpid=OTC-PDF

7

www.progress.com

PROGRESS SOFTWARE
Progress Software Corporation (NASDAQ: PRGS) is a global software company that simplifies the development, deployment and management of business applications on-
premise or in the cloud, on any platform or device, to any data source, with enhanced performance, minimal IT complexity and low total cost of ownership.

WORLDWIDE HEADQUARTERS
Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please go to www.progress.com/worldwide

Progress, DataDirect, DataDirect Connect, OpenAccess and SequeLink are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and other countries. Any other marks contained herein may be trademarks of their respective owners. Specifications subject to change without notice.

© 2008, 2014 Progress Software Corporation. All rights reserved.

Rev. 9/14

by OODBMS. As in the example SQL query, to find all employees
in a department, a join between the DEPT and EMP table can
be handled by the IP more efficiently than by the DAM. The
DAM recognizes joins that can be handled by the IP (based on
the foreign key and accessibility information returned by the
Schema Manager) and passes these joins down to the IP. The
IP retrieves the parent object and any referenced objects using
pointer access and passes this to the DAM for expression
evaluation. As in the normal select processing, the matching
set of rows for all referenced tables are added to the result set.

The DAM performs the following operations to use join push-
down capability of an IP:

1.	 Identifies the relations (tables) referenced by the query
that are accessible through pointers by the IP.

2.	 Calls the EXECUTE function within the IP with an optimally
ordered set of tables that are referenced by the join query.
Each table is tagged with the columns required for the
expression processing and the columns required for the
result set. The IP starts with the first table and builds up
the row with the required columns from all the tables. It
then calls the evaluation function in the DAM.

3.	 Executes on other tables as needed and merges the
results.

Let’s look at the processing for the sample query we looked
at to retrieve all the employees belonging to the engineering
department:

select * from EMP,DEPT where DEPT.

NAME=‘Engineering’ and DEPT.empObjID=EMP.

ObjID;

1.	 The DAM identifies table DEPT as the primary table and
EMP as a table referenced by a pointer from the DEPT
table. A linked list of tables starting with DEPT is formed.
Each table has associated with it a list of columns that are
referenced in the where clause and a list of columns that
are to be included in the result set.

2.	 The DAM assigns expression NAME=‘Engineering’ to the
DEPT table.

3.	 The DAM calls the EXECUTE(‘SELECT’) in your IP with the
list of tables and associated expression formulated in
steps 1 and 2.

4.	 The IP checks for equality constraints on any columns of
the DEPT table that have an index (and in this case finds a
constraint on NAME) and uses this information to retrieve
that row. It then retrieves the required columns of the EMP
table for expression processing (in this case none). With a
row that contains data from the DEPT table, the IP calls the
evaluation function in the DAM to decide on whether this
row should be accepted or not.

5.	 If the row is to be accepted, then the IP completes the
processing for the selected row. In this example, the
IP finds out that the empObjID foreign key is a set and
proceeds to build a row for each member of that set. It
includes only the columns that are required in the result
set. Each row is added to the DAM result set as it is
completed.

OTHER OPTIMIZATION
The DAM will pass sort by and other operations to the IP if it is
capable of more efficiently processing the order by (sorting)
type of operations. This is true for database systems that
store data in a certain order. In such a case, the IP can register
that the IP can handle such and such type of sorting.

CONCLUSION
OpenAccess SDK allows you to expose Object/Hierarchical
databases through a relational model and provide efficient
processing of JOINS which are required to access multiple
levels.

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF
http://www.facebook.com/progresssw
http://www.twitter.com/progresssw
http://www.youtube.com/progresssw
http://www.progress.com/worldwide/?cmpid=OTC-PDF

