
www.progress.com
DATA SHEET

WRAPPING SQL
COMPONENTS

REQUIREMENTS FOR ENABLING CLIENT APPLICATIONS TO
ACCESS DATABASES USING EXISTING MIDDLEWARE
You may have an existing middleware component that is capable of executing SQL queries
against various databases using your own mechanism. You now have a requirement to
allow applications to use an ODBC driver, OLE DB provider, or JDBC driver to access this
data. Additional requirements are:

�� Support access to information stored in relational and/or proprietary databases from
standard desktop tools like Microsoft Access, PowerBuilder, Visual Basic, Crystal
Reports, PERL, ASP, ADO and many other tools

�� Use existing middleware for SQL processing

�� Limit the types of queries that can be issued

�� Expose schema for only the tables/columns the connected user is allowed to see

�� Expose a global schema of a distributed database that is physically stored in different
databases

ACCESSING DATABASES VIA CORBA — A SAMPLE CASE
For this use case, assume we have data stored in one or more databases but this data can
only be accessed using a CORBA compliant business object that can take SQL queries and
execute them against one or more instances of Oracle databases.

We want the following features:

1.	 To provide a single ODBC driver to access this information – the ODBC driver may be
used on the same system or in client/server configuration

2.	 To expose only certain tables to the client applications

3.	 To have full control over the execution of the SQL query – the Business Object is fully
capable of doing this

4.	 To have full control over data mapping as the data is transferred from the business
object to the client application

5.	 Support on both UNIX and NT platforms

6.	 Support for desktop and client/server configurations

HIGHLIGHTS:
�� Manage distribution of data

to end user apps

�� Build an ODBC interface to
your database

�� Optionally, validate SQL
queries

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

2

HOW TO QUICKLY MANAGE
DISTRIBUTION OF DATA TO END USER
APPLICATIONS
The Progress® DataDirect® OpenAccess™ product
can help you create a customizable infrastructure
for managing the distribution of information from
your storage to the end user’s application. The basic
idea is to use the OpenAccess SDK product to build
an ODBC interface to your database(s). Because
you are using a software development kit, you have
full control on how to process the query. And you
can start from our existing library of interfaces for
Oracle, Sybase, Informix, Ingres, DB2 and others.
This allows you to have customized access to these
databases in weeks.

For this example we will use OpenAccess in the SQL
database access mode where the SQL queries are
executed not by the OpenAccess SQL engine but by
the code you provide. The code you write is referred
to as the SQL IP. This allows you to make use of
your existing software that is capable of executing
SQL statements. We choose this mode because
the component we are using to access the data in this example is already
capable of executing SQL queries. As a side note, optionally the OpenAccess
SQL engine can be used in this configuration to validate the SQL queries.
Basically we parse the query and provide the parse tree to you such that you
can control what queries you want to allow.

Figure 1 shows OpenAccess in a client/server architecture in which you build a server
process that includes our OpenRDA Server code and your code that will communicate
with your Business Object. Figure 2 shows OpenAccess in desktop configuration where
you build a DLL or a shared library that includes the OpenAccess
ODBC or OLE DB code and your code that will communicate with
your Business Object. The code in the green box labeled “Your
SQL IP Code” is responsible for implementing the functions
listed in Table 1. These functions are called by the OpenAccess
code to handle ODBC/OLE DB API calls made by an application.
Please refer to the OpenAccess SQL IP Programmer’s Guide for
more details.

Let’s walk through the sequence of steps we need to perform in
order to execute a validated SQL statement:

1.	 Receive connection from the client with their user name and
password - Use this information as is or with a different user
name and password to connect to your Business Object.

2.	 Receive the query from the application.

3.	 Your SQL IP Code is called to execute the query after which
it is called again to retrieve the data. Your IP retrieves each
row of data from the Business Object. The IP handles data
manipulation queries and schema information queries.

OLE DB Interfaces

Windows 3.1, Windows NT, Windows 95 UNIX, OpenVMS, OS/2, MVS, AIX, Solaris

Handles client/server
communications

Your SQL IP to handle
executing SQL commands

One of the supported server platforms
Windows NT, Windows 95/98, UNIX, OpenVMS, OS/2

MVS, AIX, Solaris

ODBC Interfaces ODBC Interfaces

OpenRDA OpenRDA

OpenRDA Server

Your SQL IP Code

Business
Object

TCP/IP

DATA

Your SQL IP to handle
executing SQL commands

Your SQL IO Code

Business
Object

DATA

OLE DB Interfaces ODBC Interfaces

Figure 1: Client-Server Architecture

Figure 2: Desktop Configuration

http://www.progress.com/?cmpid=OTC-PDF
http://www.datadirect.com/techres/oasdkproddoc/index.ssp

www.progress.com

3

Operation Description

init Called at startup to initialize the IP. The IP performs all the required startup processing.

exit Called when the OpenRDA Server (in client/server) or the client DLL (in local case) is shutting down. The IP
should free all resources and shutdown any open connections.

alloc_connect Called when a client wants to establish a connection with a data source served by the IP. Set up a handle
to be used for this connection.

connect Called when a client wants to establish a connection with a data source served by the IP. Authentication
information such as the user name and password are passed in.The IP attempts to connect to the
database at this time.

disconnect Close the connection. The IP should close any files or other connections established on behalf of this
connection.

free_connect Free the connection handle. The IP should close any files or other connections established on behalf of
this connection.

start_transaction Called to initiate a new transaction. The IP can use this entry point to perform transaction management
for each connection.

commit Commit the changes

rollback Called with operation code COMMIT or ROLLBACK.

alloc_stmt Allocate a statement handle to be used for executing

free_stmt Free a statement handle that was allocated by the ALLOC_STMT

execute_immediate Executes the given non-select SQL statement and return the number of rows affected by the statement.

prepare Parse the given statement and generate plan for executing the statement. The IP should collect
information about any parameters in the statement and also description about result columns (if stmt is
of type SELECT)

execute Execute the prepared non-select stmt and return the number of rows affected by the stmt. It is
recommended that the IP create a new memory tree to be used for statement execution and free the tree
after completion. Note that the IP should be able to handle execution of the same statement multiple
times.

declare_cursor Associate the cursor name with the prepared select statement. If the IP has no use for a cursor name, it
can have an empty function for this.

open_cursor Open the cursor, i.e., execute the select statement. Save the result table and place the cursor before the
first row in the table. Return the number of rows selected. It is recommended the IP create a new memory
tree for execution which it should free when close_cursor() is called.

close_cursor Close the cursor and clear the result table. Free the Exec memory tree if the IP had a separate memory
tree for statement execution.

is_cursor_open Check if the cursor is open on the current statement handle

fetch_row Advance the cursor to the next row of the result table. On reaching End of the Table, return SQLDRV_EOS.

get_numparams Returns the number of parameter markers in the prepared statement. If the statement does not have any
parameters, returns 0.

init_param Initialize the parameter with the specified value.

get_numcols Return the number of columns in the result set. If the statement is a DML (INSERT, UPDATE, DELETE), it
will return 0. If statement is a query (SELECT) it will return number of columns.

get_colspec Returns the description about the column.

get_colval Return the column value in the same format as the type of the column. For example, if the column is
defined as XO_TYPE_CHAR, then the data is a character string.

error Return the error during the last operation on either the connection or statement handle. Once the error is
returned, delete the error. This function is called until it returns SQLDRV_EOS to indicate no more errors
exist.

Table 1: SQL IP API – Functions Your Code Needs to Implement

http://www.progress.com/?cmpid=OTC-PDF

4

www.progress.com

PROGRESS SOFTWARE
Progress Software Corporation (NASDAQ: PRGS) is a global software company that simplifies the development, deployment and management of business applications on-
premise or in the cloud, on any platform or device, to any data source, with enhanced performance, minimal IT complexity and low total cost of ownership.

WORLDWIDE HEADQUARTERS
Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please go to www.progress.com/worldwide

Progress, DataDirect, DataDirect Connect, OpenAccess and SequeLink are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and other countries. Any other marks contained herein may be trademarks of their respective owners. Specifications subject to change without notice.

© 2008, 2014 Progress Software Corporation. All rights reserved.

Rev. 9/14

YOUR DEVELOPMENT EFFORT
1.	 Start with our SQL IP template or one we have developed

and enhance with your rules for accepting a query and
accounting for the usage. We have production quality SQL
IPs that have been developed for Oracle, ODBC, Sybase
and others.

2.	 Link with our OpenRDA Server libraries or desktop libraries
to create the server executable or the shared library.

Expected time of completion: 1 man week

BENEFITS OF USING OPENACCESS
�� Binary support on many platforms – The code you get

is supported in binary format on most popular operating
systems.

�� Compatibility – The ODBC drivers developed using
OpenAccess are compatible with the Microsoft ODBC driver
manager version 2.5+ on Windows and with DataDirect and
iODBC driver managers versions 2.5+ on UNIX.

�� Thread safe – The ODBC drivers developed using
OpenAccess are thread safe and can be configured to be
fully multi-threaded or to be thread safe in which only one
thread is allowed to perform an operation at a time.

�� Based on proven technology – The OpenAccess
components you use to build an ODBC driver for your SQL
component are the same pieces used by hundreds of our
OEMs to implement drivers for non-SQL databases and are
the same pieces used by thousands of end users to access
Microsoft SQL Server and other SQL databases on NT from
UNIX.

�� Write code once and deploy in desktop or in client/server
configuration – The SQL IP code you write stays the same
whether you will be running in desktop configuration or
in client/server configuration – just build with different
libraries.

�� Support – Our developers provide the support so that you
can quickly and accurately get your questions answered.

�� Flexible licensing – We will work with you to make it cost
effective for you to use our technology.

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF
http://www.facebook.com/progresssw
http://www.twitter.com/progresssw
http://www.youtube.com/progresssw
http://www.progress.com/worldwide/?cmpid=OTC-PDF

