
www.progress.com

PROGESS®

DATADIRECT
XQUERY®

PERFORMANCE:
GENERATING SQL

Marc Van Cappellen
Jonathan Robie

http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com

www.progress.com

TABLE OF CONTENTS

Overview 2

Selecting Data 3

Example 1. Where Clause Pushdown 4

Example 2. Column Pushdown 4

Quantifiers 5

Example 3. Quantifier Pushdown 5

Joins 6

Example 4. Join Pushdown 6

Sorting Data 6

Example 5. Order by Pushdown 6

Example 6. Order by Pushdown—Empty Least 7

Example 7. Sorting Empty Greatest on Microsoft SQL Server 7

Building XML Hierarchies 8

Example 8. Sort-Merge Join 8

Example 9. Outer Join 10

External Variables 11

Example 10. XQuery External Variables 11

Example 11. Sequences as External Variables 12

XQuery Global Variables 13

Example 12. Global Variables 13

XQuery Built-In Functions 13

Example 13. A Straightforward Built-In Function 14

Example 14. A More Complex XQuery Built-In Function 14

User-Declared Functions 15

Example 15. Inlining User-Declared Functions 15

Calling Database Functions 15

Example 16. Calling Database Functions 16

Consistent SQL Generation 16

Example 17. SQL Generation For Equivalent Queries 16

Relaxing XQuery Semantics 17

Example 18. String Comparison and Trailing Spaces (XQuery Semantics) 17

Example 19. String Compaison and Trailing Spaces Ignoring Trailing Spaces 18

Summary 19

http://www.progress.com/?cmpid=OTC-PDF

1

www.progress.com

Implementing XQuery efficiently for relational databases is not trivial, because XQuery and
SQL support different operations on quite different data models. At Progress® DataDirect®, we
emphasized performance and scalability in the design of our Progress® DataDirect XQuery®
engine from the beginning, with a strong focus on relational data. This paper presents some of
the techniques we use to generate efficient SQL for relational databases to implement XQuery
for these data sources.

These techniques work and give us better performance than other XQuery implementations.
Some XQuery implementations we have tested return an entire table for queries where we
return only part of a single
row. Others generate the same SQL regardless of the database involved, a strategy that
simply can not offer good performance. Some XQuery implementations rely on the least-
commondenominator functionality of the least capable JDBC drivers, which limits performance
significantly. Some XQuery implementations perform most XQuery functions in the XQuery
engine instead of evaluating them in the database.

Progress DataDirect is the leading vendor of database connectivity software, and we know
how to measure performance and scalability. We have spent many man-years developing
extensive XQuery performance test suites, and we run these suites regularly as part of
our standard development cycle. When our support staff identifies interesting customer
performance scenarios, these are added to our performance test suites. In our testing, we
have been pleased to find that applications written using DataDirect XQuery generally perform
better than equivalent applications written using SQL, JDBC, and an XML API. Not all XQuery
implementations can offer that kind of performance.

In this paper, we will explain some of the techniques we have developed, showing the SQL that
DataDirect XQuery generates for a number of specific XQueries. If you want to see the SQL
generated for one of your queries, you can do that using the profiler provided by your database
vendor. If you are comparing XQuery products, comparing the SQL they generate can help you
understand how these products will perform. Most of the generated SQL shown in this paper is
for Oracle 10gR2—SQL generated for other databases may look significantly different.

OVERVIEW
Before we explore individual queries, let’s take a high-level look at the techniques we use. Most
of the specific techniques we show later are based on the following general principles:

1. Minimize data retrieval.
Moving data is expensive. In DataDirect XQuery, the SQL we generate is as selective as
possible, retrieving only the data needed to create the results of a query. Some XQuery
implementations we have tested return an entire table for queries where we return only part
of a single row.

2. Leverage the database.
In DataDirect XQuery, operations that can be performed in SQL are pushed down into the
database, where the relational query optimizer can leverage indexes and other structures.
The performance gains this brings are particularly important for joins, Order By clauses,
and SQL functions. This also reduces data retrieval, since data need not be retrieved for
operations to be done in the database.

http://www.progress.com/?cmpid=OTC-PDF

2

www.progress.com

3. Optimize for each database.
Today’s relational databases support significantly different dialects of SQL, and even when
two databases support the same operation, their performance may be quite different. Any
given database has enough functionality to support XQuery efficiently, but the constructs
needed to do this are different for each database. Some XQuery implementations support
only one database; others generate the same SQL regardless of the database involved,
which results in poor performance. In contrast, DataDirect XQuery uses a different SQL
adaptor for each database, generating SQL specifically optimized for that database, based
on our extensive performance testing.

4. Retrieve data efficiently.
The underlying database drivers can significantly affect performance. As the leading
vendor of JDBC, ODBC, and ADO.NET drivers, Progress DataDirect knows how to make
our drivers perform while providing good support for all major relational databases. And
because we control both the XQuery implementation and the underlying JDBC drivers, we
can add optimizations to the drivers to support our implementation. The added cost of XML
construction, which can be considerable in some implementations, is negligible in ours.

5. Support incremental evaluation.
In many applications, results are returned to the user as soon as they are available,
displaying the first results well before the entire query has been performed. Many XML
applications are based on streaming architectures. In DataDirect XQuery, we use lazy
evaluation so that streaming APIs can retrieve data as soon as it is available. As data is
needed, we retrieve it incrementally from JDBC result sets. Because there is no need to have
the entire result in memory at one time, very large documents can be created.

6. Optimize for XML hierarchies.
Because XML construction is hierarchical, DataDirect XQuery uses SQL algorithms that
optimize retrieving data for building hierarchies. For instance, we make extensive use of
merge-joins when translating XQuery to SQL.

7. Give the programmer the last word.
Every SQL programmer knows that occasionally you need to use hints to get optimal
performance for a specific query. This is also true in XQuery, so DataDirect XQuery allows
programmers to influence the SQL we generate. This can significantly improve performance
in some cases.

SELECTING DATA
To minimize data retrieval, DataDirect XQuery generates very selective SQL, returning only
the data that is needed for a given XQuery. To avoid retrieving rows that are not needed, the
conditions in Where clauses and predicates are converted to Where clauses in the generated
SQL. To avoid retrieving columns that are not needed, the generated SQL specifies the columns
actually needed to evaluate the XQuery. Some XQuery implementations retrieve much more
data than is actually needed, which significantly hurts performance.

http://www.progress.com/?cmpid=OTC-PDF

3

www.progress.com

EXAMPLE 1. WHERE CLAUSE PUSHDOWN
In this example, the SQL query generated by DataDirect XQuery returns only the rows that are
actually needed for the XQuery.

XQuery (with Where clause)

for $h in collection(‘HOLDINGS’)/HOLDINGS
 where $h/SHARES < 10000
 return $h/USERID

XQuery (with predicate)

for $h in collection(‘HOLDINGS’)/HOLDINGS[SHARES <
 10000]
 return $h/USERID

Generated SQL (for both forms of the XQuery)

SELECT ALL
 nrm4.”USERID” AS RACOL1
 FROM
 “PEPPINO”.”HOLDINGS” nrm4
 WHERE
 nrm4.”SHARES” < 10000

EXAMPLE 2. COLUMN PUSHDOWN
The SQL query generated by DataDirect XQuery retrieves only the columns that are actually
needed for the XQuery.

XQuery

for $u in collec tion(‘USERS’)/USERS
 return <user>{$u/FIRSTNAME,$u/LASTNAME}</user>

Generated SQL

SELECT ALL
 nrm5.”FIRSTNAME” AS RACOL1,
 nrm5.”LASTNAME” AS RACOL2

FROM
 “PEPPINO”.”USERS” nrm5

QUANTIFIERS
Another way DataDirect XQuery minimizes data retrieval is by implementing quantified
expressions with SQL in the database. These expressions are generally used in predicates and
Where clauses, reducing the number of rows retrieved from the database.

EXAMPLE 3. QUANTIFIER PUSHDOWN
XQuery

for $u in collection(“USERS”)/USERS
 where every $h in collection(“HOLDINGS”)/

http://www.progress.com/?cmpid=OTC-PDF

4

www.progress.com

 HOLDINGS[USERID=$u/USERID]
	 satisfies	$h/SHARES	>	1000
 return <user id=”{$u/LASTNAME}”/>

Generated SQL

SELECT ALL
 nrm5.”LASTNAME” AS RACOL2
 FROM
 “PEPPINO”.”USERS” nrm5
 WHERE
 NOT EXISTS(
 SELECT ALL 1 AS RACOL1
 FROM “PEPPINO”.”HOLDINGS” nrm10
 WHERE (CASE WHEN nrm10.”SHARES” > 1000
 THEN 0 ELSE 1 END) !=0
 AND nrm10.”USERID” = nrm5.”USERID”
 AND LENGTH(nrm10.”USERID”) =
 LENGTH(nrm5.”USERID”)

)

JOINS
Relational databases are designed to optimize joins, so DataDirect XQuery leverages the
database when an XQuery join involves SQL data. Performing all the joins in the database
results in a dramatic performance gain because DataDirect XQuery simply uses the SQL engine
in your database.

EXAMPLE 4. JOIN PUSHDOWN
XQuery

for $u in collection(‘USERS’)/USERS
 for $h in collection(‘HOLDINGS’)/HOLDINGS
 where $u/USERID = $h/USERID
 return <holding name=”{$u/LASTNAME}”>{$h/SHARES/
 text()}</holding>

Generated SQL

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1,
 nrm9.”SHARES” AS RACOL2
 FROM
 “PEPPINO”.”USERS” nrm5,
 “PEPPINO”.”HOLDINGS” nrm9
 WHERE
 nrm5.”USERID” = nrm9.”USERID” AND
 LENGTH(nrm5.”USERID”) = LENGTH(nrm9.”USERID”)

http://www.progress.com/?cmpid=OTC-PDF

5

www.progress.com

SORTING DATA
DataDirect XQuery leverages the database for sorting because the database can leverage
indexes to sort much more efficiently.

EXAMPLE 5. ORDER BY PUSHDOWN
The XQuery uses the Order By clause to sort database data in the database.

XQuery

for $u in collection(‘USERS’)/USERS
 order by $u/LASTNAME
 return <user name=”{$u/LASTNAME}”/>

Generated SQL

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5
 ORDER BY
 nrm5.”LASTNAME” ASC

EXAMPLE 6. ORDER BY PUSHDOWN—EMPTY LEAST
DataDirect XQuery supports all variants of Order By in XQuery, pushing them down to the
database. For instance, here is the SQL generated for a query that uses the empty least clause.

XQuery

for $u in collection(‘USERS’)/USERS
 order by $u/OTHERNAME descending empty least
 return <user name=”{$u/LASTNAME}”/>

Generated SQL (Oracle 10gR2)

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5
 ORDER BY
 nrm5.”OTHERNAME” DESC NULLS LAST

EXAMPLE 7. SORTING EMPTY GREATEST ON MICROSOFT
SQL SERVER
In some cases, supporting an XQuery sort order requires some ingenuity. For instance,
Microsoft SQL Server does not support sorting NULL high, so we use a simple trick to implement
empty greatest for this database efficiently while still correctly implementing the semantics of
XQuery.

XQuery

for $u in collection(‘USERS’)/USERS
 order by $u/OTHERNAME descending empty greatest
 return <user name=”{$u/LASTNAME}”/>

http://www.progress.com/?cmpid=OTC-PDF

6

www.progress.com

Generated SQL (SQL Server)

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5
 ORDER BY
 (CASE WHEN nrm5.”OTHERNAME” IS NULL THEN 0
 ELSE 1 END) ASC, nrm5.”OTHERNAME” DESC

BUILDING XML HIERARCHIES
XQuery is all about XML, which is based on hierarchy and sequence. If an XQuery is to be fast,
the XQuery implementation must handle hierarchy efficiently. Choosing the correct SQL
algorithm is important, so our performance testing of DataDirect XQuery included a variety of
algorithms. You can choose any of these algorithms for a given query.

The sort-merge join algorithm is an efficient way to obtain data for building hierarchies in all
queries. In many cases it is the fastest, and it has very good worst-case performance, so this
is the default algorithm in DataDirect XQuery. For each level of hierarchy, SQL result sets are
generated using the same sort order. These result sets are then merged in the XQuery engine,
which creates the XML structures that represent the hierarchy.

EXAMPLE 8. SORT-MERGE JOIN
Using the sort-merge algorithm, the inner and outer FLWOR expressions are each translated
into a SQL query, sorted by row id, and the results are merged in the XQuery engine.

XQuery

for $u in collection(“USERS”)/USERS
 return
 <user name=”{$u/LASTNAME}”>{
 for $h in collection(“HOLDINGS”)/HOLDINGS
 where $h/USERID = $u/USERID
 return
 <holding id=”{$h/STOCKTICKER}”>{data($h/
 SHARES)}</holding>
 }</user>

SQL (for users)

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1,
 nrm5.”ROWID” AS RACOL2
 FROM
 “PEPPINO”.”USERS” nrm5
 ORDER BY
 nrm5.”ROWID” ASC

SQL (for holdings)

SELECT ALL
 nrm5.”ROWID” AS RACOL2,
 nrm9.”STOCKTICKER” AS RACOL3,

http://www.progress.com/?cmpid=OTC-PDF

7

www.progress.com

 nrm9.”SHARES” AS RACOL4
 FROM
 “PEPPINO”.”USERS” nrm5,
 “PEPPINO”.”HOLDINGS” nrm9
 WHERE
 nrm9.”USERID” = nrm5.”USERID” AND
 LENGTH(nrm9.”USERID”) = LENGTH(nrm5.”USERID”)
 ORDER BY
 nrm5.”ROWID” ASC

In some cases, such as when the XML nesting level is limited to four or less, you get better
performance using the outer join algorithm, which uses only a single SQL statement. However,
when the XML nesting level is greater than four, this single SQL statement can be very complex,
so this is not the default algorithm in DataDirect XQuery. The following query shows how to
choose the outer join algorithm.

EXAMPLE 9. OUTER JOIN
This example shows how to use a declaration option to tell DataDirect XQuery to use the outer
join algorithm when generating SQL for building hierarchies.

XQuery

declare option ddtek:sql-rewrite-algorithm “outer-join”;
 for $u in collection(“USERS”)/USERS
 return
 <user name=”{$u/LASTNAME}”>{
 for $h in collection(“HOLDINGS”)/HOLDINGS
 where $h/USERID = $u/USERID
 return
 <holding id=”{$h/STOCKTICKER}”>{data($h/
 SHARES)}</holding>
 }</user>

Generated SQL

SELECT ALL
 RAREL3.RACOL3 AS RACOL3,
 RAREL3.RACOL4 AS RACOL4,
 RAREL3.RAOJ1 AS RAOJ1,
 nrm5.”LASTNAME” AS RACOL1,
 nrm5.”ROWID” AS RACOL2
 FROM
 {oj
 “PEPPINO”.”USERS” nrm5
 LEFT OUTER JOIN
 (SELECT ALL
 nrm9.”STOCKTICKER” AS RACOL3,
 nrm9.”SHARES” AS RACOL4,
 nrm9.”USERID” AS USERID,
 2 AS RAOJ1
 FROM “PEPPINO”.”HOLDINGS” nrm9) RAREL3
 ON
 RAREL3.USERID = nrm5.”USERID” AND

http://www.progress.com/?cmpid=OTC-PDF

8

www.progress.com

 LENGTH(RAREL3.USERID) = LENGTH(nrm5.”USERID”)}
 ORDER BY RACOL2 ASC

EXTERNAL VARIABLES
XQJ prepared queries are analogous to SQL prepared statements; they use XQuery external
variables in the same way that SQL uses parameter markers. The DataDirect XQuery SQL
Adapter converts queries with external variables into SQL prepared statements (except when
an external variable contains a sequence—this case is discussed in Example 11).

EXAMPLE 10. XQUERY EXTERNAL VARIABLES
XQuery

declare variable $shares as xs:integer external;
 for $h in collection(‘HOLDINGS’)/HOLDINGS
 where $h/SHARES < $shares
 return $h/USERID

Generated SQL

SELECT ALL
 nrm4.”USERID” AS RACOL1
 FROM
 “PEPPINO”.”HOLDINGS” nrm4
 WHERE
 nrm4.”SHARES” < ?

EXAMPLE 11. SEQUENCES AS EXTERNAL VARIABLES
XQuery supports sequences as external variables, but in SQL, a parameter is a single value.
DataDirect XQuery uses temporary tables in the database to represent XQuery external
variables that contain sequences. The sequence is inserted into the temporary table using
batch insert in order to minimize the number of database round trips.

XQuery

declare variable $shares as xs:int* external;
 for $h in collection(‘HOLDINGS’)/HOLDINGS
 where $h/SHARES = $shares
 return $h/USERID

Generated SQL

INSERT INTO RATEMP009368710001(RAVAR, RAINT)
 VALUES(0, ?);
 SELECT ALL
 nrm4.”USERID” AS RACOL2
 FROM
 “PEPPINO”.”HOLDINGS” nrm4
 WHERE
 EXISTS(SELECT ALL
 1 AS RACOL1
 FROM
 RATEMP009368710001 nrm7

http://www.progress.com/?cmpid=OTC-PDF

9

www.progress.com

 WHERE
 nrm7.RAVAR = 0 AND nrm4.”SHARES” =
 nrm7.RAINT)

;

DELETE FROM RATEMP009368710001 WHERE RAVAR IN (0)

The cost of temporary tables and execution of three SQL statements is greatly outweighed
by the ability to evaluate the Where clause in the SQL database. Most implementations do not
push sequences of external variables into the database, so they are not able to push the Where
clause into the database and must retrieve the entire table, evaluating the Where clause in the
XQuery engine.

XQUERY GLOBAL VARIABLES
SQL does not have a construct equivalent to XQuery’s global variables. When an XQuery global
variable is set to values from the database, DataDirect XQuery generally inlines the variable in
the statement created for the query body.

EXAMPLE 12. GLOBAL VARIABLES
XQuery

declare variable $users := collection(‘USERS’)/
 USERS;
 for $u in $users
 return $u/LASTNAME

Generated SQL

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5
 WHERE
 nrm5.”LASTNAME” IS NOT NULL

XQUERY BUILT-IN FUNCTIONS
XQuery has a large library of built-in functions, which are all supported by DataDirect XQuery.
The vast majority of these are translated into SQL. For some of these functions, the translation
is straightforward; for others, the translation requires more thought. We do not know of
another XQuery implementation in which such a high proportion of XQuery functions are
executed directly in the database.

EXAMPLE 13. A STRAIGHTFORWARD BUILT-IN FUNCTION
XQuery

for $u in collection(‘USERS’)/USERS
 return concat($u/FIRSTNAME,$u/LASTNAME)

Generated SQL

http://www.progress.com/?cmpid=OTC-PDF

10

www.progress.com

SELECT ALL
 {fn CONCAT(nrm5.”FIRSTNAME”,nrm5.”LASTNAME”)} AS
 RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5

For most of the functions in the XQuery built-in library, though, translating to efficient SQL is
nontrivial. DataDirect XQuery does this without changing the semantics of the XQuery function.

EXAMPLE 14. A MORE COMPLEX XQUERY BUILT-IN FUNCTION
XQuery

for $u in collection(‘USERS’)/USERS
 return substring-before($u/FIRSTNAME, ‘lo’)

Generated SQL

SELECT ALL
 (CASE WHEN
 {fn LOCATE(‘lo’,nrm5.”FIRSTNAME”)} > 0
 THEN
 {fn LEFT(nrm5.”FIRSTNAME”, {fn
 LOCATE(‘lo’,nrm5.”FIRSTNAME”)} -1)}
 ELSE
 ‘’ END) AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5

This translation uses features found only in Oracle databases along with JDBC escapes that are
standard, but not supported by all drivers—these features are needed to implement substring-
before() efficiently. Different features are used on other databases to achieve an efficient and
conformant implementation.

USER-DECLARED FUNCTIONS
DataDirect XQuery uses intelligent function inlining so that user-declared functions can be
executed in the database.

EXAMPLE 15. INLINING USER-DECLARED FUNCTIONS
XQuery

declare function local:popularShares($quantity) {
 $quantity > 10000
 };
 collection(‘HOLDINGS’)/HOLDINGS
 SHARES[local:popularShares(.)]

SQL

SELECT ALL
 nrm5.”SHARES” AS RACOL1
 FROM
 “PEPPINO”.”HOLDINGS” nrm5

http://www.progress.com/?cmpid=OTC-PDF

11

www.progress.com

 WHERE
 nrm5.”SHARES” > 10000

CALLING DATABASE FUNCTIONS
DataDirect XQuery lets you call any function defined in your database directly as an XQuery
external function. Both built-in database functions and user-defined SQL functions are
supported. External Java functions can also be called, and these can invoke database functions.
Our support for external functions provides a way to invoke SQL functions or Java functions with
virtually no performance overhead. Because this support is a central part of our open design, you
can use DataDirect XQuery in just about any architecture.

EXAMPLE 16. CALLING DATABASE FUNCTIONS
XQuery

declare function ddtek-sql:RTRIM($s as xs:string) as
 xs:string external;
 collection(‘USERS’)/USERS/ddtek-sql:RTRIM(LASTNAME)

Generated SQL

SELECT ALL
 RTRIM(nrm7.”LASTNAME”) AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm7

CONSISTENT SQL GENERATION
In XQuery, many queries may be semantically equivalent. DataDirect XQuery recognizes
common equivalences in queries and ensures that efficient SQL is generated for all the different
ways of expressing a query.

EXAMPLE 17. SQL GENERATION FOR EQUIVALENT QUERIES
XQuery (all of these queries are equivalent)

collection(“USERS”)/USERS/FIRSTNAME[.=’John’]

collection(“USERS”)//FIRSTNAME[.=’John’]

collection(“USERS”)/USERS[FIRSTNAME=’John’]/FIRSTNAME

for $u in collection(“USERS”)/USERS

where $u/FIRSTNAME = ‘John’

return $u/FIRSTNAME

declare	function	local:testUser($firstname){$firstname	
 = ‘John’};

for $u in collection(“USERS”)/USERS

where local:testUser($u/FIRSTNAME)

http://www.progress.com/?cmpid=OTC-PDF

12

www.progress.com

return $u/FIRSTNAME

for $u in collection(“USERS”)/USERS

return if ($u/FIRSTNAME = ‘John’) then $u/FIRSTNAME
 else ()

Generated SQL (generated for all the above queries)

SELECT ALL
 nrm6.”FIRSTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm6
 WHERE
 nrm6.”FIRSTNAME” = ‘John’ AND
 LENGTH(nrm6.”FIRSTNAME”) = LENGTH(‘John’)

RELAXING XQUERY SEMANTICS
When translating XQuery to SQL, DataDirect XQuery is careful to preserve XQuery semantics,
even if this complicates the generated SQL. For example, unlike XQuery string comparison, SQL
character comparison is not sensitive to differences in trailing spaces. To accommodate this
semantic difference, the SQL statements that DataDirect XQuery executes compare both the
strings and the length of the strings.

EXAMPLE 18. STRING COMPARISON AND TRAILING SPACES (XQUERY
SEMANTICS)
XQuery

for $u in collection(‘USERS’)/USERS
 where $u/FIRSTNAME = ‘John’
 return <user name=”{$u/LASTNAME}”/>

SQL

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5
 WHERE
 nrm5.”FIRSTNAME” = ‘John’ AND
 LENGTH(nrm5.”FIRSTNAME”) = LENGTH(‘John’)
 ORDER BY
 nrm5.”ROWID” ASC

Note the additional comparison on the string length, which is needed to fully conform to the
XQuery specification. But in most cases VARCHAR columns don’t have trailing spaces, and
trailing spaces in a CHAR column are not significant. Using a declaration option, you can instruct
DataDirect XQuery to ignore the trailing spaces for character comparisons, which corresponds to
the semantics of SQL string comparisons and, thus, simplifies the generated SQL.

http://www.progress.com/?cmpid=OTC-PDF

13

www.progress.com

EXAMPLE 19. STRING COMPARISON AND TRAILING SPACES (IGNORING
TRAILING SPACES)
XQuery

declare option ddtek:sql-options “ignore-trailing-
 spaces=yes”;
 for $u in collection(‘USERS’)/USERS
 where $u/FIRSTNAME = ‘John’
 return <user name=”{$u/LASTNAME}”/>

SQL

SELECT ALL
 nrm5.”LASTNAME” AS RACOL1
 FROM
 “PEPPINO”.”USERS” nrm5
 WHERE
 nrm5.”FIRSTNAME” = ‘John’

The DataDirect XQuery User’s Guide lists more declaration options that can be used to simplify
the generated SQL.

SUMMARY
DataDirect XQuery was designed for performance and scalability, which are essential in
business-critical applications. Because of our careful attention to the generating the best
possible SQL to implement XQuery on any given database, as well as using the best available
JDBC technology, DataDirect XQuery has exceptional performance. It generally outperforms
both Java applications that create XML from database data using JDBC, SQL, and XML APIs. It
also generally outperforms other XQuery implementations.

Implementing XQuery efficiently for SQL databases requires sophisticated query optimization
and SQL generation algorithms. In this document, we have outlined some of the techniques
DataDirect XQuery uses to generate efficient SQL. Our performance suites and our customers’
experience show that these techniques are very effective. When you need more control over
the SQL that is used, you can call SQL functions as XQuery external functions or use declaration
options to influence the algorithms we use in generated SQL.

PROGRESS SOFTWARE
Progress Software Corporation (NASDAQ: PRGS) is a global software company that simplifies the development, deployment and management of business applications on-
premise or in the cloud, on any platform or device, to any data source, with enhanced performance, minimal IT complexity and low total cost of ownership.

WORLDWIDE HEADQUARTERS
Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please go to www.progress.com/worldwide

Progress, DataDirect, DataDirect Connect, and DataDirect XQuery are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and other countries. Any other marks contained herein may be trademarks of their respective owners. Specifications subject to change without notice.

© 2010-2011, 2014 Progress Software Corporation. All rights reserved.

Rev. 8/14 | 6525-131847

http://www.progress.com/?cmpid=OTC-PDF

