
Using DataDirect® JDBC™ Drivers with Hibernate

What is Hibernate?

Hibernate is an open source project that provides an object-relational mapping
solution for Java applications. Business logic in Java applications uses objects to
represent data, while databases store relational data in a table format consisting
of rows and columns.

Hibernate maps the data represented in Java objects to the relational data of the
database. Each row of a table is represented as a single Java object. Hibernate
also supplies a persistence layer for saving, updating and retrieving data in your
database tables, as well as connection pool and transaction management
facilities.

Hibernate was created to address the needs of developers who wish to easily
persist their Java objects using a robust persistence mechanism while avoiding
the complexity of EJB 2.0 persistence. Hibernate provides applications an object
relational data mapping solution while completely abstracting the power of the
underlying data source.

Why Using DataDirect JDBC Drivers Makes This Technology Better
• Performance and Scalability

 Best JDBC driver performance for any production scenario

 Best JDBC performance for single-threaded (one connection) and
multi-threaded (many connections) situations

• Quality and Support

 Quality tested with extensive internal and industry test suites

 Embedded in the world’s most demanding software applications and
application servers

 Backed by the industry’s best technical support organization with a
complete focus on data access middleware

• Consistent and complete database support in one package

 Robust database feature support including security features such as
SSL and Kerberos

 Supports the latest versions of all major databases

• Standards-based, 100% Java approach to feature implementation across
databases.

Required Components
• Download Hibernate Core from http://www.hibernate.org/6.html

• Download DataDirect Connect for JDBC from
http://www.datadirect.com/downloads/registration/connect_jdbc/index.ssp

Installation of DataDirect Connect for JDBC Drivers

After downloading the DataDirect Connect for JDBC drivers, they may be installed
with a 15 day evaluation license. DataDirect Connect for JDBC supports Microsoft
SQL Server, DB2, Oracle, Sybase, Informix, and MySQL. This example will use
only the SQL Server driver. Complete documentation along with the DataDirect
Connect for JDBC installation guide is available at
http://www.datadirect.com/techres/jdbcproddoc/index.ssp

Required Hibernate and DataDirect Connect for JDBC Libraries

For simplicity, all Java source and configuration files, as well as the required
Hibernate and DataDirect Connect for JDBC libraries, will be placed in the same
location. This will be our examples working directory.

Copy the following required Hibernate libraries from the Hibernate installation to
the working directory. Some of the file names in your Hibernate installation will
include numbers indicating the version of that file. The version numbers have
been omitted from these file names below. These libraries must be on your
classpath when you run the example.

lib/antlr.jar

lib/cglib.jar

lib/asm.jar

lib/asm-attrs.jars

lib/commons-collections.jar

lib/commons-logging.jar

lib/jta.jar

lib/dom4j.jar

lib/log4j.jar

hibernate3.jar

Copy the following DataDirect Connect for JDBC libraries from the driver installation
to the working directory. These libraries must be on your classpath when you run
the example.

lib/sqlserver.jar

2 O F 9 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 8

http://www.hibernate.org/6.html
http://www.datadirect.com/downloads/registration/connect_jdbc/index.ssp
http://www.datadirect.com/techres/jdbcproddoc/index.ssp

lib/base.jar

lib/util.jar

Implementing an Object Relational Solution with Hibernate and
DataDirect Connect for JDBC Drivers

To implement a simple object relational solution, four components will be required
in addition to the previously mentioned Hibernate and DataDirect Java libraries.
Two are Hibernate configuration files. The remaining two are Java classes. One
Java class is our persistent class and the other is the sample application that will
persist this class to and retrieve it from the database. Complete implementations
of these components are included and an explanation of each is provided below.

The persistent class, Emp, represents the database table EMP. This class uses
standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. This is a recommended design but is not
required. Each instance of this class represents a single row in the database table
and each field of this class represents a specific column in the database table.

package tables;

import java.util.Date;

public class Emp {
 private String firstName;
 private String lastName;
 private int empId;
 private Date hireDate;
 private float salary;
 private String dept;
 private int exempt;
 private String interests;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public int getEmpId() {
 return empId;
 }

 private void setEmpId(int empId) {
 this.empId = empId;
 }

 public Date getHireDate() {
 return hireDate;
 }

 public void setHireDate(Date hireDate) {
 this.hireDate = hireDate;
 }

D A T A D I R E C T T E C H N O L O G I E S 3 O F 9

 public float getSalary() {
 return salary;
 }

 public void setSalary(float salary) {
 this.salary = salary;
 }

 public String getDept() {
 return dept;
 }

 public void setDept(String dept) {
 this.dept = dept;
 }

 public int getExempt() {
 return exempt;
 }

 public void setExempt(int exempt) {
 this.exempt = exempt;
 }

 public String getInterests() {
 return interests;
 }

 public void setInterests(String interests) {
 this.interests = interests;
 }

}

The Hibernate mapping file tells Hibernate how it will map a specific Java object
to a specific database table. This file specifies the database column that each
field of the persistent class will map to as well as the Hibernate data type for each
of these mappings. This file uses the <id> tag to specify which field of the
persistent class will be used as a unique identifier. Since the name of our
persistent class will be Emp, we will save the mapping file as Emp.hbm.xml.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="Emp" table="EMP">
 <id name="empId" column="EMP_ID">
 <generator class="native"/>
 </id>
 <property name="firstName" type="string" column="FIRST_NAME"/>
 <property name="lastName" type="string" column="LAST_NAME"/>
 <property name="hireDate" type="date" column="HIRE_DATE"/>
 <property name="salary" type="float" column="SALARY"/>
 <property name="dept" type="string" column="DEPT"/>
 <property name="exempt" type="integer" column="EXEMPT"/>
 <property name="interests" type="string" column="INTERESTS"/>
 </class>

</hibernate-mapping>

The main Hibernate configuration file in this example is hibernate.cfg.xml.
This file contains information for creating the Hibernate session factory. It is
where we will specify the driver to be used, its connectivity information, the
appropriate database dialect and what objects will be mapped.

4 O F 9 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 8

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>
 <!-- Database connection settings -->
 <property name="connection.driver_class">
 com.ddtek.jdbc.sqlserver.SQLServerDriver
 </property>
 <property name="connection.url">
 jdbc:datadirect:sqlserver://nc-answline-
w2k:1435;databaseName=test
 </property>
 <property name="connection.username">test</property>
 <property name="connection.password">test</property>

 <!-- SQL dialect -->
 <property
name="dialect">org.hibernate.dialect.SQLServerDialect</property>

 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>

 <!-- Drop and re-create the database schema on startup -->
 <property name="hbm2ddl.auto">create</property>

 <mapping resource="Emp.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

Our sample application is the EmpManager class which contains a main()
method and is a standalone Java Application. However, these concepts could be
implemented in any Java application such as a servlet, EJB or JSP. The sample
application establishes a Hibernate session and creates unique instances of our
persistent class. It also implements methods that use Hibernate to persist these
objects to the database and to retrieve them from the database. Hibernate
generates all the appropriate SQL to create and drop the table as well as
statements to insert to, select from and update the database table. These
statements are executed on the database via the DataDirect Connect for JDBC
driver.

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Query;
import org.hibernate.cfg.Configuration;

import java.util.Date;
import java.util.List;

public class EmpManager {

 public static void main(String[] args) {

 EmpManager mgr = new EmpManager();

 Configuration config = new Configuration().configure();
 SessionFactory sessionFactory = config.buildSessionFactory();
 Session session = sessionFactory.getCurrentSession();
 session.beginTransaction();

D A T A D I R E C T T E C H N O L O G I E S 5 O F 9

 //Persist several instances of the Java object Emp to the database
table EMP
 mgr.createAndStoreObjects(session, "Tyler", "Bennett", new
Date("1977/06/01"),
 (float) 32000.00, "D101", 1, "");
 mgr.createAndStoreObjects(session, "John", "Rappl", new
Date("1987/07/15"),
 (float) 47000.00, "D050", 1, "");
 mgr.createAndStoreObjects(session, "George", "Woltman", new
Date("1982/08/07"),
 (float) 53500.00, "D101", 1, "");
 mgr.createAndStoreObjects(session, "Adam", "Smith", new
Date("1988/01/15"),
 (float) 18000.00, "D202", 0, "");
 mgr.createAndStoreObjects(session, "David", "McClellan", new
Date("1982/07/27"),
 (float) 41500.00, "D101", 1, "");

 /*Retrieve the persisted objects from the database and display them
on the
 console.*/
 mgr.listObjects(session);

 //Commit the transaction
 session.getTransaction().commit();

 //Close the current session factory and unbind it from the thread.
 sessionFactory.close();
 }

 private void createAndStoreObjects(Session session,
 String firstName,
 String lastName,
 Date hireDate,
 float salary,
 String dept,
 int exempt,
 String interests) {

 Emp theEmp = new Emp();
 theEmp.setFirstName(firstName);
 theEmp.setLastName(lastName);
 theEmp.setHireDate(hireDate);
 theEmp.setSalary(salary);
 theEmp.setDept(dept);
 theEmp.setExempt(exempt);
 theEmp.setInterests(interests);

 session.save(theEmp);

 }

 private void listObjects(Session session) {

 //Use the currect session to retrive records as a Java List of objects.
 Query hibernateQuery = session.createQuery("from Emp");
 List emps = hibernateQuery.list();
 for (int i = 0; i < emps.size(); i++) {
 Emp theEmp = (Emp) emps.get(i);
 System.out.println("Emp Id: " + theEmp.getEmpId());
 System.out.println(" First Name: " + theEmp.getFirstName());
 System.out.println(" Last Name: " + theEmp.getLastName());
 System.out.println(" Hire Date: " + theEmp.getHireDate());
 System.out.println(" Salary: " + theEmp.getSalary());
 System.out.println(" Dept: " + theEmp.getDept());
 System.out.println(" Exempt: " + theEmp.getExempt());
 System.out.println(" Interests: " + theEmp.getInterests());
 }
 return;
 }

}

6 O F 9 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 8

Running the Sample Application

After setting the classpath as defined above, run the sample application from the
command line as follows:

 java EmpManager

Below is a sample of the output that the application generates showing that the
Java objects were persisted to the database and subsequently returned to the
application.

Hibernate: insert into EMP (FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY, DEPT,
EXEM
PT, INTERESTS) values (?, ?, ?, ?, ?, ?, ?)
Hibernate: insert into EMP (FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY, DEPT,
EXEM
PT, INTERESTS) values (?, ?, ?, ?, ?, ?, ?)
Hibernate: insert into EMP (FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY, DEPT,
EXEM
PT, INTERESTS) values (?, ?, ?, ?, ?, ?, ?)
Hibernate: insert into EMP (FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY, DEPT,
EXEM
PT, INTERESTS) values (?, ?, ?, ?, ?, ?, ?)
Hibernate: insert into EMP (FIRST_NAME, LAST_NAME, HIRE_DATE, SALARY, DEPT,
EXEM
PT, INTERESTS) values (?, ?, ?, ?, ?, ?, ?)
Hibernate: select emp0_.EMP_ID as EMP1_0_, emp0_.FIRST_NAME as FIRST2_0_,
emp0_.
LAST_NAME as LAST3_0_, emp0_.HIRE_DATE as HIRE4_0_, emp0_.SALARY as
SALARY0_, em
p0_.DEPT as DEPT0_, emp0_.EXEMPT as EXEMPT0_, emp0_.INTERESTS as
INTERESTS0_ fro
m EMP emp0_
Emp Id: 1
 First Name: Tyler
 Last Name: Bennett
 Hire Date: Wed Jun 01 00:00:00 EDT 1977
 Salary: 32000.0
 Dept: D101
 Exempt: 1
 Interests:
Emp Id: 2
 First Name: John
 Last Name: Rappl
 Hire Date: Wed Jul 15 00:00:00 EDT 1987
 Salary: 47000.0
 Dept: D050
 Exempt: 1
 Interests:
Emp Id: 3
 First Name: George
 Last Name: Woltman
 Hire Date: Sat Aug 07 00:00:00 EDT 1982
 Salary: 53500.0
 Dept: D101
 Exempt: 1
 Interests:
Emp Id: 4
 First Name: Adam
 Last Name: Smith
 Hire Date: Fri Jan 15 00:00:00 EST 1988
 Salary: 18000.0
 Dept: D202
 Exempt: 0
 Interests:
Emp Id: 5
 First Name: David
 Last Name: McClellan
 Hire Date: Tue Jul 27 00:00:00 EDT 1982

D A T A D I R E C T T E C H N O L O G I E S 7 O F 9

 Salary: 41500.0
 Dept: D101
 Exempt: 1

 Interests:

Useful Links

Hibernate documentation:

http://www.hibernate.org/5.html

Download Hibernate Core:

http://www.hibernate.org/6.html

Download DataDirect Connect for JDBC:

http://www.datadirect.com/downloads/registration/connect_jdbc/index.ssp

DataDirect Connect for JDBC documentation
http://www.datadirect.com/techres/jdbcproddoc/index.ssp

We welcome your feedback! Please send any comments concerning documentation, including
suggestions for other topics that you would like to see, to:

docgroup@datadirect.com

8 O F 9 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 8

http://www.hibernate.org/5.html
http://www.hibernate.org/6.html
http://www.datadirect.com/downloads/registration/connect_jdbc/index.ssp
http://www.datadirect.com/techres/jdbcproddoc/index.ssp

FOR MORE INFORMATION

800-876-3101

Worldwide Sales

Belgium (French)0800 12 045
Belgium (Dutch)................0800 12 046
France0800 911 454
Germany0800 181 78 76
Japan0120.20.9613
Netherlands0800 022 0524
United Kingdom0800 169 19 07
United States..................800 876 3101

DataDirect Technologies is the software industry’s only
comprehensive provider of software for connecting the world’s
most critical business applications to data and services, running
on any platform, using proven and emerging standards.
Developers worldwide depend on DataDirect® products to
connect their applications to an unparalleled range of data
sources using standards-based interfaces such as ODBC,
JDBC™ and ADO.NET, XQuery and SOAP. More than 300
leading independent software vendors and thousands of
enterprises rely on DataDirect Technologies to simplify and
streamline data connectivity for distributed systems and to
reduce the complexity of mainframe integration. DataDirect
Technologies is an operating company of Progress Software
Corporation (Nasdaq: PRGS). For more information, visit
www.datadirect.com.

© 2008 Progress Software Corporation. All rights reserved.
DataDirect , DataDirect Connect, and SequeLink are
registered trademarks of Progress Software Corporation.
Other company or product names mentioned herein may be
trademarks or registered trademarks of their respective
companies.

D A T A D I R E C T T E C H N O L O G I E S 9 O F 9

http://www.datadirect.com/index.ssp

	What is Hibernate?
	Why Using DataDirect JDBC Drivers Makes This Technology Better
	Required Components
	Installation of DataDirect Connect for JDBC Drivers
	Required Hibernate and DataDirect Connect for JDBC Libraries
	Implementing an Object Relational Solution with Hibernate and DataDirect Connect for JDBC Drivers
	Running the Sample Application
	Useful Links

