

Understanding JTA—the Java® Transaction API

Introduction
The Java® Transaction API (JTA) allows applications to perform distributed transactions,
that is, transactions that access and update data on two or more networked computer
resources. The JTA specifies standard Java interfaces between a transaction manager
and the parties involved in a distributed transaction system: the application, the
application server, and the resource manager that controls access to the shared
resources affected by the transactions. This document provides an overview of that
process and how the DataDirect Connect® for JDBC® drivers relate to it.

A transaction defines a logical unit of work that either completely succeeds or produces
no result at all. A distributed transaction is simply a transaction that accesses and
updates data on two or more networked resources, and therefore must be coordinated
among those resources. In this document, we are concerned primarily with transactions
that involve relational database systems.

The components involved in the distributed transaction processing (DTP) model that are
relevant to our discussion are:

 The application

 The application server

 The transaction manager

 The resource adapter

 The resource manager

In the following sections, we describe these components and their relationship to JTA
and database access.

Accessing Databases
It is best to think of the components involved in distributed transactions as independent
processes, rather than in terms of location on a particular computer. Several of the
components may reside on one machine, or they may be spread among several
machines. The diagrams in the following examples may show a component on a
particular computer, but the relationship among the processes is the primary
consideration.

The Simplest Case: Application to Database Local Transactions
The simplest form of relational database access involves only the application, a resource
manager, and a resource adapter. The application is simply the end-user access point to
send requests to, and obtain data from, a database.

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

2 O F 1 2 D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5

The resource manager in our discussion is a relational database management system
(RDBMS), such as Oracle or SQL Server. All of the actual database management is
handled by this component.

The resource adapter is the component that is the communications channel, or request
translator, between the "outside world," in this case the application, and the resource
manager. For our discussion, this is a JDBC driver.

The following description is of a resource manager local transaction, that is, one
transaction that is confined to a single, specific enterprise database.

The application sends a request for data to the JDBC driver, which then translates the
request and sends it across the network to the database. The database returns the data
to the driver, which then translates the result to the application, as illustrated in the
following diagram:

This example illustrates the basic flow of information in a simplified system; however, the
enterprise of today uses application servers, which adds another component to the
process.

RDBMS

Application

JDBC Driver

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5 3 O F 1 2

Application Servers
The application server is another component of the transaction process that is addressed
by the JTA. Application servers handle the bulk of application operations and take some
of the load off of the end-user application. Building on the preceding example, we see
that the application server adds another process tier to the transaction:

Up to this point, our examples illustrate a single, local transaction and describe four out of
the five components of the distributed transaction model. The fifth component, the
transaction manager, comes into consideration only when transactions are to be
distributed.

RDBMS

Application Server

Application

JDBC
Driver

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

4 O F 1 2 D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5

Distributed Transactions and the Transaction Manager
As we stated previously, a distributed transaction is a transaction that accesses and
updates data on two or more networked resources. These resources could consist of
several different RDBMSs housed on a single sever, for example, Oracle, Microsoft SQL
Server, and Sybase; or they could include several instances of a single type of database
residing on a number of different servers. In any case, a distributed transaction involves
coordination among the various resource managers. This coordination is the function of
the transaction manager.

RDBMS

Application Server

Application

JDBC
Driver

1

3

2 Transaction Manager

RDBMS

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5 5 O F 1 2

The transaction manager is responsible for making the final decision either to commit or
rollback any distributed transaction. A commit decision should lead to a successful
transaction; rollback leaves the data in the database unaltered. JTA specifies standard
Java interfaces between the transaction manager and the other components in a
distributed transaction: the application, the application server, and the resource
managers. This relationship is illustrated in the following diagram:

The numbered boxes around the transaction manager correspond to the three interface
portions of JTA:

 1—UserTransaction—The javax.transaction.UserTransaction interface provides
the application the ability to control transaction boundaries programmatically. The
javax.transaction.UserTransaction method starts a global transaction and
associates the transaction with the calling thread.

2—Transaction Manager—The javax.transaction.TransactionManager interface
allows the application server to control transaction boundaries on behalf of the
application being managed.

3—XAResource—The javax.transaction.xa.XAResource interface is a Java mapping
of the industry standard XA interface based on the X/Open CAE Specification
(Distributed Transaction Processing: The XA Specification).

Notice that a critical link is support of the XAResource interface by the JDBC driver. The
JDBC driver must support both normal JDBC interactions, through the application and/or
the application server, as well as the XAResource portion of JTA. DataDirect Connect for
JDBC drivers provide this support.

Developers of code at the application level should not be concerned about the details of
distributed transaction management. This is the job of the distributed transaction
infrastructure—the application server, the transaction manager, and the JDBC driver.

RDBMS

Application Server

Application

JDBC
Driver

1

3

2 Transaction Manager

RDBMS

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

6 O F 1 2 D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5

The only caveat for application code is that it should not invoke a method that would
affect the boundaries of a transaction while the connection is in the scope of a distributed
transaction. Specifically, an application should not call the Connection methods commit,
rollback, and setAutoCommit(true) because they would interfere with the
infrastructure's management of the distributed transaction.

The Distributed Transaction Process
The transaction manager is the primary component of the distributed transaction
infrastructure; however, the JDBC driver and application server components should have
the following characteristics:

 The driver should implement the JDBC 2.0 API (including the Optional Package
interfaces XADataSource and XAConnection) or higher and the JTA interface
XAResource.

 The application server should provide a DataSource class that is implemented to
interact with the distributed transaction infrastructure and a connection pooling
module (for improved performance).

The first step of the distributed transaction process is for the application to send a
request for the transaction to the transaction manager. Although the final commit/rollback
decision treats the transaction as a single logical unit, there can be many transaction
branches involved. A transaction branch is associated with a request to each resource
manager involved in the distributed transaction. Requests to three different RDBMSs,
therefore, require three transaction branches. Each transaction branch must be
committed or rolled back by the local resource manager. The transaction manager
controls the boundaries of the transaction and is responsible for the final decision as to
whether or not the total transaction should commit or rollback. This decision is made in
two phases, called the Two-Phase Commit Protocol.

In the first phase, the transaction manager polls all of the resource managers (RDBMSs)
involved in the distributed transaction to see if each one is ready to commit. If a resource
manager cannot commit, it responds negatively and rolls back its particular part of the
transaction so that data is not altered.

In the second phase, the transaction manager determines if any of the resource
managers have responded negatively, and, if so, rolls back the whole transaction. If there
are no negative responses, the translation manager commits the whole transaction, and
returns the results to the application.

Developers of transaction manager code must be conversant with all three interfaces of
JTA: UserTransaction, TransactionManager, and XAResource, which are described in
the Sun Java Transaction API (JTA) specification. The JDBC API Tutorial and Reference,
Third Edition is also a useful reference. JDBC driver developers need only be concerned
with the XAResource interface. This interface is a Java mapping of the industry standard
X/Open XA protocol that allows a resource manager to participate in a transaction. The
component of the driver connected with the XAResource interface is responsible for
"translating" between the transaction manager and the resource manager. The following
section provides examples of XAResource calls.

http://java.sun.com/products/jta/
http://java.sun.com/docs/books/jdbc/
http://java.sun.com/docs/books/jdbc/

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5 7 O F 1 2

The JDBC Driver and XAResource
To simplify the explanation of XAResource, these examples illustrate how an application
would use JTA when there is no application server and transaction manager involved.
Basically, the application in these examples is also acting as application server and
transaction manager. Most enterprises use transaction managers and application servers
because they manage distributed transactions much more efficiently than an application
can. By following these examples, however, an application developer can test the
robustness of JTA support in a JDBC driver. Some examples may not work for a
particular database because of inherent problems associated with that database.

Before using JTA, you must first implement an Xid class for identifying transactions (this
would normally be done by the transaction manager). The Xid contains three elements:
formatID, gtrid (global transaction ID), and bqual (branch qualifier ID).

The formatID is usually zero, meaning that you are using the OSI CCR (Open Systems
Interconnection Commitment, Concurrency, and Recovery standard) for naming. If you
are using another format, the formatID should be greater than zero. A value of –1 means
that the Xid is null.

The gtrid and bqual can each contain up to 64 bytes of binary code to identify the global
transaction and the branch transaction, respectively. The only requirement is that the
gtrid and bqual taken together must be globally unique. Again, this can be achieved by
using the naming rules specified in the OSI CCR.

The following example illustrates implementation of an Xid:
import javax.transaction.xa.*;
public class MyXid implements Xid
{
 protected int formatId;
 protected byte gtrid[];
 protected byte bqual[];

 public MyXid()
 {
 }

 public MyXid(int formatId, byte gtrid[], byte bqual[])
 {
 this.formatId = formatId;
 this.gtrid = gtrid;
 this.bqual = bqual;
 }

 public int getFormatId()
 {
 return formatId;
 }

 public byte[] getBranchQualifier()
 {
 return bqual;
 }

 public byte[] getGlobalTransactionId()
 {
 return gtrid;
 }

}

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

8 O F 1 2 D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5

Second, you need to create a data source for the database that you are using:
public DataSource getDataSource()
 throws SQLException
{
 SQLServerDataSource xaDS = new
 com.ddtek.jdbc.sqlserver.SQLServerDriver.SQLServerDataSource();
 xaDS.setDataSourceName("SQLServer");
 xaDS.setServerName("server");
 xaDS.setPortNumber(1433);
 xaDS.setSelectMethod("cursor");
 return xaDS;
}

Example 1—This example uses the two-phase commit protocol to commit one
transaction branch:

XADataSource xaDS;
XAConnection xaCon;
XAResource xaRes;
Xid xid;
Connection con;
Statement stmt;
int ret;

xaDS = getDataSource();
xaCon = xaDS.getXAConnection("jdbc_user", "jdbc_password");
xaRes = xaCon.getXAResource();

con = xaCon.getConnection();
stmt = con.createStatement();

xid = new MyXid(100, new byte[]{0x01}, new byte[]{0x02});

try {
 xaRes.start(xid, XAResource.TMNOFLAGS);
 stmt.executeUpdate("insert into test_table values (100)");
 xaRes.end(xid, XAResource.TMSUCCESS);

 ret = xaRes.prepare(xid);
 if (ret == XAResource.XA_OK) {
 xaRes.commit(xid, false);
 }
}
catch (XAException e) {
 e.printStackTrace();
}
finally {
 stmt.close();
 con.close();
 xaCon.close();
}

Because the initialization code is the same, or similar, for all the examples, code that is
significantly different is represented from this point forward in this document.

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5 9 O F 1 2

Example 2—This example, similar to Example 1, illustrates a rollback:
xaRes.start(xid, XAResource.TMNOFLAGS);
stmt.executeUpdate("insert into test_table values (100)");
xaRes.end(xid, XAResource.TMSUCCESS);

ret = xaRes.prepare(xid);
if (ret == XAResource.XA_OK) {
 xaRes.rollback(xid);
}

Example 3—This example shows how a distributed transaction branch suspends, lets
the same connection do a local transaction, and then resumes the branch later. The two-
phase commit actions of distributed transaction do not affect the local transaction.

xid = new MyXid(100, new byte[]{0x01}, new byte[]{0x02});

xaRes.start(xid, XAResource.TMNOFLAGS);
stmt.executeUpdate("insert into test_table values (100)");
xaRes.end(xid, XAResource.TMSUSPEND);

// This update is done outside of transaction scope, so it
// is not affected by the XA rollback.
stmt.executeUpdate("insert into test_table2 values (111)");

xaRes.start(xid, XAResource.TMRESUME);
stmt.executeUpdate("insert into test_table values (200)");
xaRes.end(xid, XAResource.TMSUCCESS);

ret = xaRes.prepare(xid);
if (ret == XAResource.XA_OK) {
 xaRes.rollback(xid);
}

Example 4—This example illustrates how one XA resource can be shared among
different transactions. Two transaction branches are created, but they do not belong to
the same distributed transaction. JTA allows the XA resource to do a two-phase commit
on the first branch even though the resource is still associated with the second branch.

xid1 = new MyXid(100, new byte[]{0x01}, new byte[]{0x02});
xid2 = new MyXid(100, new byte[]{0x11}, new byte[]{0x22});

xaRes.start(xid1, XAResource.TMNOFLAGS);
stmt.executeUpdate("insert into test_table1 values (100)");
xaRes.end(xid1, XAResource.TMSUCCESS);

xaRes.start(xid2, XAResource.TMNOFLAGS);

// Should allow XA resource to do two-phase commit on
// transaction 1 while associated to transaction 2
ret = xaRes.prepare(xid1);
if (ret == XAResource.XA_OK) {
 xaRes.commit(xid1, false);
}

stmt.executeUpdate("insert into test_table2 values (200)");
xaRes.end(xid2, XAResource.TMSUCCESS);

ret = xaRes.prepare(xid2);
if (ret == XAResource.XA_OK) {
 xaRes.rollback(xid2);
}

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

1 0 O F 1 2 D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5

Example 5—This example illustrates how transaction branches on different connections
can be joined as a single branch if they are connected to the same resource manager.
This feature improves distributed transaction efficiency because it reduces the number of
two-phase commit processes. Two XA connections to the same database server are
created. Each connection creates its own XA resource, regular JDBC connection, and
statement. Before the second XA resource starts a transaction branch, it checks to see if
it uses the same resource manager as the first XA resource uses. If this is case, as in
this example, it joins the first branch created on the first XA connection instead of
creating a new branch. Later, the transaction branch can be prepared and committed
using either XA resource.
xaDS = getDataSource();

xaCon1 = xaDS.getXAConnection("jdbc_user", "jdbc_password");
xaRes1 = xaCon1.getXAResource();
con1 = xaCon1.getConnection();
stmt1 = con1.createStatement();

xid1 = new MyXid(100, new byte[]{0x01}, new byte[]{0x02});
xaRes1.start(xid1, XAResource.TMNOFLAGS);
stmt1.executeUpdate("insert into test_table1 values (100)");
xaRes1.end(xid, XAResource.TMSUCCESS);

xaCon2 = xaDS.getXAConnection("jdbc_user", "jdbc_password");
xaRes2 = xaCon2.getXAResource();
con2 = xaCon2.getConnection();
stmt2 = con2.createStatement();

if (xaRes2.isSameRM(xaRes1)) {
 xaRes2.start(xid1, XAResource.TMJOIN);
 stmt2.executeUpdate("insert into test_table2 values (100)");
 xaRes2.end(xid1, XAResource.TMSUCCESS);
}
else {
 xid2 = new MyXid(100, new byte[]{0x01}, new byte[]{0x03});
 xaRes2.start(xid2, XAResource.TMNOFLAGS);
 stmt2.executeUpdate("insert into test_table2 values (100)");
 xaRes2.end(xid2, XAResource.TMSUCCESS);
 ret = xaRes2.prepare(xid2);
 if (ret == XAResource.XA_OK) {
 xaRes2.commit(xid2, false);
 }
}

ret = xaRes1.prepare(xid1);
if (ret == XAResource.XA_OK) {
 xaRes1.commit(xid1, false);
}

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5 1 1 O F 1 2

Example 6—This example shows how to recover prepared or heuristically completed
transaction branches during failure recovery. It first tries to roll back each branch; if it fails,
it tries to tell resource manager to discard knowledge about the transaction.
MyXid[] xids;

xids = xaRes.recover(XAResource.TMSTARTRSCAN | XAResource.TMENDRSCAN);
for (int i=0; xids!=null && i<xids.length; i++) {
 try {
 xaRes.rollback(xids[i]);
 }
 catch (XAException ex) {
 try {
 xaRes.forget(xids[i]);
 }
 catch (XAException ex1) {
 System.out.println("rollback/forget failed: " +
ex1.errorCode);
 }
 }
}

Conclusion
Providing JTA support in a JDBC driver greatly increases data access power. The
DataDirect Connect for JDBC drivers provide this support. In combination with the other
components of the distributed transaction process, DataDirect drivers enhance the
capability, speed, and efficiency of the modern enterprise.

References
Cheung & Matena, Java Transaction API (JTA), 1999, Sun Microsystems, Inc.

Maydene Fisher, Jon Ellis, and Jonathan Bruce, JDBC API Tutorial and Reference, Third
Edition, 2003, Addison-Wesley.

X/Open CAE Specification, Distributed Transaction Processing: The XA Specification,
1991, The X/Open Company.

We welcome your feedback! Please send any comments concerning documentation, including
suggestions for other topics that you would like to see, to:

docgroup@datadirect.com

U N D E R S T A N D I N G J T A — T H E J A V A ® T R A N S A C T I O N A P I

1 2 O F 1 2 D A T A D I R E C T T E C H N O L O G I E S M A Y 0 5

FOR MORE INFORMATION

800-876-3101

Worldwide Sales

Belgium (French)0800 12 045
Belgium (Dutch)................0800 12 046
France0800 911 454
Germany0800 181 78 76
Japan0120.20.9613
Netherlands0800 022 0524
United Kingdom0800 169 19 07
United States..................800 876 3101

Copyright © 2005 DataDirect Technologies Corp. All rights
reserved. DataDirect Connect is a registered trademark of
DataDirect Technologies Corp. in the United States and other
countries. Java and all Java based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. Other company
or product names mentioned herein may be trademarks or
registered trademarks of their respective companies.

DataDirect Technologies is focused on data access, enabling
software developers at both packaged software vendors and in
corporate IT departments to create better applications faster.
DataDirect Technologies offers the most comprehensive, proven
line of data connectivity components available anywhere.
Developers worldwide depend on DataDirect Technologies to
connect their applications to an unparalleled range of data
sources using standards-based interfaces such as ODBC, JDBC
and ADO.NET, as well as cutting-edge XML query technologies.
More than 250 leading independent software vendors and
thousands of enterprises rely on DataDirect Technologies to
simplify and streamline data connectivity. DataDirect
Technologies is an operating company of Progress Software
Corporation (Nasdaq: PRGS).

www.datadirect.com

http://www.datadirect.com

