
Packages on DB2 UDB
DataDirect Connect® Series ODBC Drivers

Introduction

The concept of "packages" in the DB2 Universal Database (UDB) system is
often not well understood. This paper provides both general information
about what packages are and how they are created and bound, as well as
specific information about both the DataDirect Connect® for ODBC (32-bit) and
DataDirect Connect64® for ODBC (64-bit) drivers. DataDirect Connect for ODBC
and DataDirect Connect64 for ODBC each include a DB2 Wire Protocol ODBC
driver that connects to DB2 UDB on Windows, UNIX/Linux, and mainframe
servers without the use of DB2 UDB client software. The drivers
automatically create and bind packages on DB2 UDB and also allow the user
to modify these packages.

In this paper, the term "SQL Request" is used as a generic term referring to
all application requests associated with a SQL statement. Internally, DB2
UDB processing actually works in terms of SQL requests rather than SQL
statements.

Packages and Sections

When DB2 UDB processes SQL statements, each individual SQL request is
mapped to a specific package. For a SQL statement to be processed, it must
be associated with a DB2 UDB package. This is the case for application
requests such as PREPARE, FETCH, and CLOSE. A more precise
statement of how DB2 UDB processes SQL requests is to say that each
individual request is mapped to a specific section entry within a specific
package within DB2 UDB.

What is a package?

A package is a cluster of information that controls the compilation of any
static SQL statement, partially controls the compilation of any dynamic SQL
statement, and influences the execution of any SQL request issued within its
scope. Package information includes items such as the optimization level
used during compilation, whether blocking is used for eligible cursors during
execution, and what degree of parallelism is used during execution. All of this
information is stored as an entry representing the package in the
SYSCAT.PACKAGES catalog table. For static SQL statements, a package
also has a section associated with it for each statement. A section is the DB2
UDB executable version of a SQL statement. A package is used by DB2

P A C K A G E S O N D B 2 U D B

UDB as a basic authorization control point. Privileges can be granted and
revoked on the package as required to permit people to execute or maintain
the package. This information is reflected in SYSCAT.PACKAGEAUTH.

Why are packages necessary?

Packages must exist for the user to be able to execute SQL statements
against DB2 UDB.

An application can be written using pure static SQL, a mix of static and
dynamic SQL, or pure dynamic SQL. All of these approaches are supported
within DB2 UDB through the use of packages.

Static SQL statements are pre-compiled and have a pre-existing access path
and therefore do not have to be compiled by the DB2 SQL compiler at run
time. They are executed under the authorization of the user who bound the
package rather than under that of the run-time user.

Dynamic SQL statements are compiled at run time, under the authorization
of the run-time user, and must be used when all or part of the SQL statement
is generated during application run time. This is the most common case with
ODBC applications. Dynamic SQL statements incur a higher startup cost, but
do not have to be recompiled when they are reused. They also use a more
optimized access path based on current database statistics.

What is a section entry?

Because an application can have many different SQL statements of both a
static and dynamic nature, so can a package. To keep the context of the
individual SQL statements clear and to avoid having to provide this
information with each request, DB2 UDB subdivides a package into smaller
units called section entries. A section entry contains information about the
SQL statement itself (if any exists) and about the context in which the SQL
statement was found in the application. For example, for a cursor, the section
entry contains the name of the cursor, whether it is a WITH HOLD cursor or
not, and whether the cursor was defined FOR UPDATE. During execution, a
section entry contains information about the current status of any section
associated with it. It also performs the same function for the state of any
associated application cursors. For dynamic SQL statements, the section
entry stored with a package is empty and simply acts as a "bookmark."

There is one unique section entry for each unique PREPARE, DECLARE
CURSORS, or static SQL found in an application. There is also one unique
entry added when an EXECUTE IMMEDIATE request is found in an
application; this entry is shared by all other EXECUTE IMMEDIATE requests
within the same application.

2 O F 8 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5

P A C K A G E S O N D B 2 U D B

What is a section?

A section is the actual executable embodiment of a SQL statement. It
contains the logic and data access methods required by DB2 UDB to
produce the specified results. A section consists of a series of operators and
any associated operands that outline the execution order and optimum
operation of the data access. The operators correspond to low-level DB2
UDB functions that access and manipulate the data. The operands represent
data elements (for example, rows, tables, and indexes) and control
structures. A section is the end result of the compilation of a SQL statement.
The SQL Compiler determines the most efficient approach for satisfying the
SQL statement and produces a section to implement this plan.

A section is an efficient way to express the logic needed for a SQL statement
because it does so directly in terms of specific DB2 UDB internal functions.
The contents of a section deal with the bare essentials and the physical
realities of the storage mechanisms used for the data. By removing the levels
of abstraction provided by SQL, a section can ensure the best performance
during the execution of the statement. A SQL statement deals with a specific
result set or target set; a set can consist of any number of rows and is
treated as a whole by SQL. That is, SQL only recognizes sets of data, not
individual rows. Because a section is physically accessing the data as
individual rows, it has control at that level. Each step in a section is based on
what to do with the current row. The section returns data to the application
on a row-by-row basis. Finally, by stripping away the abstraction of the SQL
statement, a section allows the SQL statement and its result set to be
represented by many different SQL methods getting that result set. Each
individual section is a product of the environment in which it is compiled. This
flexibility is valuable when supporting static and dynamic SQL created at
different times in different contexts.

How is a package created?

There are two basic steps in the creation of a DB2 UDB package:
precompilation and binding. Although these two steps are sometimes
combined into one from the user's perspective, they are actually two
distinctly different steps from DB2 UDB's point of view.

Precompilation occurs when application source files containing SQL
statements and host variables are submitted to a precompiler. A precompiler
is specific to a programming language. Its job is to parse the application
source to find any SQL statements and host variables, remove them, and
then replace them in the source file with function calls and variables suitable
to the programming language being used.

The resultant calls are to DB2 UDB client functions that communicate with
DB2 UDB during the execution of the application. The end result of
precompilation is a modified version of the source file and the extracted SQL

D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5 3 O F 8

P A C K A G E S O N D B 2 U D B

statements and variables. The latter can be stored in a file, called a bindfile
(.bnd), or directly submitted to DB2 UDB as part of the bind step.

Binding is the step where the SQL information extracted from an application
source file is analyzed and stored in the DB2 UDB catalog tables. This
information can come directly from the precompilation step or from a bindfile.
Information about the package, section entries, and host variables are stored
directly in the SYSCAT.PACKAGES catalog table. Static SQL statements are
passed through the SQL compiler to have sections generated for them; they
are then stored in the SYSCAT.STATEMENTS catalog table. The generated
sections for static SQL statements are stored in the SYSIBM.SYSSECTION
table. The end result of a successful bind is a DB2 UDB package.

How is a section created?

The process of creating a section from a SQL statement is referred to as
compilation. It can also be referred to as optimization or preparing.
Compilation of SQL statements within DB2 UDB is performed by the SQL
Compiler. The processes explained here apply to static and dynamic SQL
statements. The differences between these two processes arise when
compilation occurs and the values are used for the compilation environment.
Static SQL bases its compilation environment purely on the package
information. Dynamic SQL bases its compilation environment on some of the
package information but also on the current values of a number of special
registers such as CURRENT DEGREE and CURRENT SCHEMA.

The first step in the compilation of a SQL statement is the parsing stage. In
this stage, the syntax of the SQL statement is validated and the statement is
broken down into its component pieces. Using the information from the
catalog tables for any referenced data objects or functions, an internal
representation of the statement is constructed in the form of a graph. The
representation is referred to as a Query Graph Model or QGM. QGM
provides a concise and flexible representation of a statement.

The QGM representation is the basic information structure used by the
compiler as it studies and processes the statement. Once the graph
representing the basic statement structure has been constructed, it is passed
to the next stage of the processing. This stage is referred to as Semantics; it
is responsible for supplementing the basic QGM graph with the additional
information required for items like referenced views, triggers activated by the
statement, and constraints affecting the statement. The QGM graph is
extended and modified to account for the additional levels of information
brought into play by these entities.

Once the full scope of the statement is understood by the compiler and
represented by the QGM graph, the next stage of processing occurs. This
stage is referred to as Query Rewrite, or Rewrite. It evaluates the input graph
and rewrites the input QGM graph into a version that provides the maximum
amount of flexibility to the next stage - the Optimizer. The underlying
principle behind the Rewrite component is simply that there are a number of

4 O F 8 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5

P A C K A G E S O N D B 2 U D B

different ways in SQL of expressing the same result. The form of some of
these SQL statements forces certain choices on the compiler, while others
do not; thus, it follows that there can be a number of different graphs for
representing the same result set and that by transforming a graph from one
version to another, more options are made available for potentially better
decisions and more efficient access path decisions.

Rewrite is followed by Optimization, the most important stage of compilation.
It is within the optimization stage that the QGM graph is analyzed and all
possible methods of accessing the data are evaluated and their costs
estimated. The Optimizer is a cost-based decision maker that uses complex
mathematical models of the varying costs for data access and manipulation
to refine and select the most efficient access plan to satisfy the original SQL
statement.

This last stage is the code generation, or Codegen, phase where the actual
section is produced. The Codegen stage translates the "theoretical" access
plan selected by the Optimizer into a "practical" access plan as embodied by
the section. This section is then returned to the requester for execution.

The DB2 Wire Protocol Driver and Packages

The DB2 Wire Protocol driver does not work properly unless packages exist
on every server to which you intend to connect. The driver can, however,
create and bind these packages.

IMPORTANT: You must have the appropriate privileges for the driver to
create and bind packages with your user ID. These privileges are BINDADD
for binding packages and GRANT for executing the packages. These are
typically the permissions of a Database Administrator (DBA). If you do not
have these privileges, someone that has a user ID with DBA privileges needs
to create packages by connecting with the driver.

When connecting for the first time, the driver determines whether or not
packages exist on the server. If packages do not exist, the driver creates
them automatically using driver data source default values.

NOTE: The initial driver connection to a particular server may take a few
minutes because of the number and size of the packages that must be
created on the server. Subsequent connections do not incur this delay.

By default, the packages contain 200 dynamic sections and are created in
the collection named NULLID. You can override the default number of
dynamic sections through the Dynamic Sections option on the Modify
Bindings tab of the driver Setup dialog box or by setting the
DynamicSections connection string attribute. Similarly, you can override the
collection in which the packages are created through the Package Collection
option on the Modify Bindings tab of the driver Setup dialog box or by setting
the PackageCollection attribute.

D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5 5 O F 8

P A C K A G E S O N D B 2 U D B

If you change default values in a data source before connecting with the
driver for the first time, the new defaults are used when creating the
packages. If you want to change these values after the packages have been
created, you can re-create the packages with the new values by one of the
following methods:

Windows

On Windows, the driver allows you to create or modify packages from the
Modify Bindings tab.

UNIX and Linux

On UNIX and Linux, the driver allows you to create or modify packages
through a special bind utility. Depending on the platform of the DB2 server,
the minimum attribute values that must be set in the data source to bind
packages are:

Linux/UNIX/Windows DB2 Servers

IpAddress, Database, TcpPort

z/OS and iSeries DB2 Servers

IpAddress, Location, TcpPort

There are also other attribute values that affect binding. See the appropriate
product User's Guide and Reference for details about configuring data
sources for the DB2 Wire Protocol driver on UNIX and Linux. These books
are available at:

http://www.datadirect.com/download/docs/dochome/index.ssp

The bind utility is located in the /bin directory of the product installation
directory. After specifying the appropriate connection string attribute values
in the data source, create or modify packages by entering the command:

bindxx dsn

where xx is the driver level number in the driver file name and dsn is the
ODBC data source name in the system information file. You are prompted for
a user ID and password if they are not stored in the data source. If packages
are created and bound successfully, a message indicating success appears.
If there are problems connecting or creating the packages, an appropriate
error message appears.

6 O F 8 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5

http://www.datadirect.com/download/docs/dochome/index.ssp

P A C K A G E S O N D B 2 U D B

Summary

Packages provide flexibility for processing both static and dynamic SQL on
DB2 UDB. There are two basic steps in the creation of a DB2 UDB package:
precompilation and binding.

To keep the context of individual SQL statements clear, a package is
subdivided into section entries. A section entry contains information about
the SQL statement itself and about the context in which the SQL statement
was found in the application. A section itself is the actual executable
embodiment of a SQL statement. It contains the logic and data access
methods required by DB2 UDB to produce the specified results.

The DB2 Wire Protocol driver can create and bind packages, and does so
automatically when it first connects to DB2 UDB. You can change the
defaults used for this initial package creation or you can modify the package
bindings later. This is done through the Modify Bindings tab of the driver
Setup dialog box on Windows or through the bind utility on UNIX and Linux.

Reference:

Inside DB2 Universal Database: The Life and Times of an SQL Statement,
Paul Bird, The IDUG Solutions Journal, Fall 1999 - Volume 6, Number 3.

We welcome your feedback! Please send any comments concerning documentation, including
suggestions for other topics that you would like to see, to:

docgroup@datadirect.com

D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5 7 O F 8

P A C K A G E S O N D B 2 U D B

FOR MORE INFORMATION

800-876-3101

Worldwide Sales

Belgium (French)0800 12 045
Belgium (Dutch)................0800 12 046
France0800 911 454
Germany0800 181 78 76
Japan0120.20.9613
Netherlands0800 022 0524
United Kingdom0800 169 19 07
United States..................800 876 3101

Copyright © 2005 DataDirect Technologies Corp. All rights
reserved. DataDirect Connect is a registered trademark of
DataDirect Technologies Corp. in the United States and other
countries. DataDirect XQuery is a trademark of DataDirect
Technologies Corp. in the U.S. and other countries. Java and
all Java based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. Other company or product names
mentioned herein may be trademarks or registered
trademarks of their respective companies.

DataDirect Technologies is focused on standards-based data
connectivity, enabling software developers to quickly develop
and deploy business applications across all major databases and
platforms. DataDirect Technologies offers the most
comprehensive, proven line of data connectivity components
available anywhere. Developers worldwide at more than 250
leading independent software vendors and thousands of
corporate IT departments rely on DataDirect® products to
connect their applications to an unparalleled range of data
sources using standards-based interfaces such as ODBC,
JDBC™ and ADO.NET. Developers also depend on DataDirect
to radically simplify complex data integration projects using XML
products based on the emerging XQuery and XQJ standards.
DataDirect Technologies is an operating company of Progress
Software Corporation (Nasdaq: PRGS), a US$300+ million global
software industry leader. Headquartered in Bedford, Mass.,
DataDirect Technologies can be reached on the Web at
http://www.datadirect.com or by phone at +1-800-876-3101.

8 O F 8 D A T A D I R E C T T E C H N O L O G I E S J U L Y 2 0 0 5

http://www.datadirect.com/

	Introduction
	Packages and Sections
	What is a package?
	Why are packages necessary?
	What is a section entry?
	 What is a section?
	How is a package created?
	How is a section created?
	The DB2 Wire Protocol Driver and Packages
	 Summary

