
1

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Laura Lewis:

Welcome everyone. I’m Laura Lewis and I’m on the marketing team here at Progress, supporting
our Kinvey product. It’s my pleasure to introduce today’s webinar, “What Serverless Means for
Enterprise Apps.” Today we have a highly regarded speaker with us. Michael Salinger is the
Senior Director of Engineering for Kinvey at Progress, where he leads the team responsible for
the development of the Kinvey serverless cloud. Michael has extensive experience in cloud,
serverless technology, web, mobile, and back-end systems, having architected and built multiple
SAS and cloud products over the course of his 17-year career. At Kinvey, Michael designed and
architected the FlexService Runtime, a Node.js framework, for the development, deployment, and
execution of serverless functions and micro services for enterprise applications. Please join me in
welcoming Michael.

Michael Salinger:

Thanks Laura, and good morning everyone. Serverless has become quite the buzz-worthy term
over the past couple years with the introduction of AWS Lambda and other similar services.
Today we’re going to try to unpack what serverless means, separate out some of the myths
from the reality, and also look at what serverless means for enterprise apps and how it can be
impactful on building enterprise applications. So to start off today, we’re going to take a couple
of polls to get a feel and an assessment for what you all think about serverless based on what
you’ve heard and researched and read. And the first poll question is, what does serverless
mean? What do you think it means based on what you know? Is it implementing applications
without servers? Implementing applications without any operations or “no-ops”? Implementing
applications without thinking about resources or implementing server logic with individual
functions -- such as functions as a service? Or are you not sure? So the results are interesting.
A lot of people unsure, we’ve got some -- looks like implementing server logic with individual
functions is high up there, and implementing without resources. Good.

What Serverless Means for
Enterprise Apps

WEBINAR TRANSCRIPT

Michael Salinger

Take just one more quick poll question before we get started. How does a serverless architecture impact
enterprise applications? They don’t at all, they’re a means of keeping costs down, they help accelerate
development, they help developers focus on the important parts of the app, or I’m not sure. All right, most of
you thought that it helps developers focus on the important parts of the app, then accelerate development --
and means of keeping cost down also was high up there. All right, so now we’re going to start just by looking
at what we’re going to cover today.

So first we’re going to take a look at what is serverless, and separate some of the myths and misconceptions
out there from reality of what serverless is. We’re going to follow that up with looking at the building blocks
of serverless and what are the different components that make a serverless architecture. Then we’re going to
turn to what does serverless mean for enterprise applications? How can it impact me as a developer building
an application for my enterprise? And then we’re going to take a look at how Progress Kinvey enables
serverless and helps build enterprise applications. And finally we’re going to take a look at some general
design considerations for building a serverless app. So we’ll start off with what is serverless?

Some common misconceptions -- and the first one is the one that received I think the highest poll score
-- is not just functions as a service. It’s not just FAS. Now, functions as a service is a critical component
to a serverless architecture, and it is a common usage of serverless, but it is not the only aspect of what a
serverless architecture entails. It doesn’t mean no servers. A lot of times when I’m introducing serverless
architecture to two different people, one of the common questions I get is well, there has to be a server
somewhere. You can’t have something without servers. Well it doesn’t mean no servers, and we’ll see a
little bit later what it means in relation to servers. It’s not one specific technology or specific technologies.
It’s not functions as a service, as I said before. It’s not Lambda, it’s not Kubernetes or Docker -- although
all of those pieces do contribute to a serverless architecture, and they’re examples of technologies you can
use to implement a serverless architecture. In and of themselves, they are enablers of serverless -- they’re
not what serverless is itself. And it’s not no-ops. Operations is always a key component of any application.
While the role of operations will change in a serverless architecture, it doesn’t alleviate the need of operations
altogether.

So then what is serverless? We kind of looked at what it isn’t, now we’re going to take a look at what it is. So
serverless refers to any cloud native service for implementing application logic that allows the developer to
focus on the app and not think about servers. Let’s unpack this a little. Cloud-Native. Serverless is not client
side -- although there can be client-side components that interact with serverless as part of the architecture.
In and of itself, serverless is definitely not something that you put on a client. It’s not installed software. If
you’re installing it on your own network, on your own servers, and the claim is that it’s serverless -- it’s missing
the point a little bit of Cloud-Native and serverless. And one of the reasons for that is -- the next couple
bullet points -- it’s provisioned on-demand, it’s fully redundant, load balance, and auto scales. So all of those
things -- the cloud enables serverless to be possible. So the fact that you have resources that are managed
in the cloud enables what we’ll talk about in the next couple slides as serverless. So it’s used for developing
application logic. And some examples of that type of application logic are integrations with various back-
end systems, various functions to respond to events, messaging, different services -- such as data store,
CDN, file store -- really anything that would require high-level performance server processing -- that type of
application logic is what serverless enables.

And finally, and this is probably the most important piece, it allows you to focus on the app and not the
servers. So no provisioning, no managing, no scaling concerns, no worrying about how your app will
communicate with the servers. The back-end of your application is an extension of your application. It’s
not something that is separate that you have to worry about. You’re focusing on your app, you’re focusing
on what your app needs to do. Not the servers, not the resources. So again, serverless refers to any Cloud-
Native service for implementing application logic that allows the developer to focus on the app and not think
about servers. Or to put it another way, serverless allows application developers to focus on the application
logic rather than the kinds of resources that are needed to run the application.

So we’re going to talk now about some of the different building blocks of serverless. What are the
components that make up a typical serverless architecture? Well the first one is one that most people have
heard about, and most people think about when they think about serverless. And that’s cloud functions --
also known as function as a service. The second is micro services. Third, cloud services. And then the fourth
is events. So cloud functions -- also known as function as a service -- are single, stateless, atomic functions
that scale. So what does that mean? You write a single function to implement a piece of business logic. And
that function is invoked by the client application or some event. Each function scales independently based
on its needs. So let’s take an example of where you might have two pieces of your application, and one
of them is a data integration function that makes a request out to a REST API, and returns the data. And
the second is a password hashing algorithm for your user authentication. Now each one of those has very
different performance needs. Password hashing is a very expensive operation, and requires a lot of CPU, and
so its scaling needs are going to be a lot different from a data operation where you’re making a request out
to an external system, and basically waiting for the result to come back. And so if there’s a spike in one use
or another, the benefit of cloud functions is that these are separately and independently scaled. So each one
of these is scaled up or scaled down based on the current needs of the application. So as a certain aspect of
your application is hit harder, that particular piece will scale up to its own individual resource needs.

In a typical application, you may have tens or hundreds of cloud functions. Really anything that you would
need typically to off-load to a more highly performant back-end server, you would consider using a cloud
function for.

So the next component is micro services. Now micro services have been around for a lot longer than
serverless architecture has. So while micro services themselves are not unique to serverless architecture,
they are a critical building block of serverless architecture. And serverless micro services have very specific
characteristics. But looking at just in general what micro services offer, the emphasis is on micro. They need
to be very small, very lightweight, single-purpose services. In fact, in a serverless context, because of what we
discussed in regards to cloud functions, you want to keep your micro services as small as possible. Because
you want to take advantage of the individual scaling characteristics that serverless offers, you would want to
keep the micro services focused on a single task. The reason you would use a micro service as opposed to
just a cloud function is if you had some code or some functionality that is shared and could use the benefit
of having a slightly larger unit of code than just an individual function. A typical application may have
several different micro services, and one of the things that makes micro services serverless as opposed to

just generic micro services is that they’re written in a way that the server infrastructure transports scaling is
hidden from the developer. So the developer never has to take into account how am I going to access that
micro service from my app. The developer doesn’t have to worry about how that’s going to scale, what the
characteristics of it are. The developer, again, just writes the logic and focuses on the code.

So cloud services are another component of a serverless architecture. Cloud services are no-code services
that implement some back-end application need. Some types of cloud services would be cloud data store,
user management, integration with data sources, SSL providers, messaging, notifications, email, push, and so
on. Really any service in the cloud that helps developer implement some logic in their application without
thinking about servers. And finally we get to the glue of serverless architecture, and that’s events.

So the logic in serverless responds to events. And those events can occur inside application, they can be
external events, invoked events. And some examples -- you know, you could have a serverless function that
executes before creating a new entity in some data store. You can invoke in response to an HTTP end point.
A serverless function can be invoked in response to some client-side event, such as geofencing. An example
that I’ve used before is, let’s say you have a retail store application that is on a mobile app that wants to let
the store manager know when a customer with the mobile app enters the store. So a geofencing event could
trigger a cloud function that sends that store manager a Slack notification for someone who has the app and
is part of the preferred program for the store.

Events are still in the early stages. They are common to pretty much all serverless providers, and there is a
lot of effort right now to really flesh out what they can do and how powerful they can be, and I think there’s
going to be a lot more in the next three to five years that we’re going to see from the events space. There is
actually a consortium right now that is working to create a standardization around event message passing.
So there’s really a lot of movement in this area, and it’s worth watching and keeping an eye out for.

So now, what does serverless mean for enterprise applications? So we know what serverless is, we know what
its basic building blocks are. But the important part of this is how does it help me as an enterprise developer
build applications? So it’s all about delivering value. As a developer, not having to think about the resources,
not having to think about how my application will scale, how I’m going to communicate between my
application and my back-end systems -- it allows me to focus on my value -- the value that my app provides
that’s different than what anyone else is providing. It allows me to spend the limited development hours
that I have on that value, and less time on common technical hurdles that most applications have to deal
with anyway. It allows me to focus on the experience -- build the UX first, think about the client experience
and how the client will interact with the app, offload those complex app functions to cloud services, cloud
functions, and microservices. Take away any of the heavy processing from the client apps so the UX can
be fluid and delightful for the user to use. It allows me to not worry at all about resourcing, high availability,
scaling needs. Don’t have to think about how much memory my application’s going to use, how much CPU
I need, what the disk space requirements are. I focus on my application and let the serverless infrastructure
take care of the rest.

Just one word of caution. It’s not an excuse to write bad code. I’ve had conversations before with some
people where they would write something like a triple four loop that you see here that is going to be
grossly inefficient, and expect the serverless architecture to kind of correct their mistakes. And a serverless
architecture will do well at scaling and managing resources for well-performing applications. But if you have
something that is really a bottleneck -- like something that you see here -- no amount of scaling is going to
take care of that, because the performance needs of something like this will outstrip the ability of any system
to scale in a reasonable time. So while you don’t have to take into account memory, and while you don’t have
to take into account CPU, and worry about how it’s going to scale, you still need to write good, efficient code.

So besides value, it also enables high productivity for developers, because there’s no provisioning, no waiting
on IT or DevOps to stand up on a dev server for me to be able to start testing out my app, and countless
hours spent getting the production system and production servers ready. Because you’re creating small
atomic units of code in configuration-based services, you’re able to engage in frequent low-risk iterations
and make small changes to your code, which reduces the risk of errors popping up and bugs getting into the
system. And so it really is conducive to agile and lean methodologies.

So I want to spend a little time just talking about Progress Kinvey, which was built from the start as a
serverless platform. Again, all of the serverless components that I’ve talked about are representative in
Progress Kinvey, and I’m just going to spend a little time illustrating some of those features and how they
relate to the serverless architecture.

So first we’ll start with cloud functions. Kinvey’s cloud functions were launched in 2012. It was essentially
function as a service before function as a service was a thing. And as we described earlier in cloud functions,
there are small atomic stateless functions that respond to events such as onPreSave of some entity into a
data store, onPostFetch, et cetera. They can be invoked via an SDK or HTTP, and they scale as needed and
they’re load balanced and redundant.

There’s an example here of just a very simple cloud function on the Kinvey platform. In this case it is a
function that will respond to a onPreSave event for an entity on a specific data collection. And here I’m just
doing a very simple validation to make sure that the owner property of the entity contains the progress.com
domain name. And if it doesn’t, I automatically append it before continuing to save it to the data store. And
so that is just one very small example that illustrates some of the power of just doing these simple validations
in a very easy, low code manner. Because you’re hooking into the events, you’re taking advantage of the
Kinvey data request pipeline, and you’re just inserting yourself right into the middle of that.

Another example similar to what I spoke earlier about the person entering into the store -- this function can
respond to that geofencing event, and send a Slack notification to the store manager when someone enters
the store.

So now we’re going to talk about flex services. And flex services are Kinvey’s implementation of stateless,
serverless, micro services. They can be used for data integration needs, custom authentication, and business
logic. And using an SDK that Kinvey provides, called the Flex SDK, all of the server components

are hidden -- HTTP, ports, routing, middleware, et cetera. The developer just implements specific functions
in the micro service in response to different events. And it also integrates with the common CI/CD systems
-- so you can introduce continuous integration and continuous deployment into your microservices. And, like
everything else, they’re automatically load balanced, redundant and scalable.

So in a flex service, you register different functions in your flex service to respond to different events. Now
flex services are all Node.js projects, and they allow you to -- because they’re a Node.js project, you can make
use of all of NPM and the ecosystem around NPM -- and wire up, you know, different functions and have
different common code and common files shared among these functions. But each function is wired up to
a different event. So here for example I’m registering this transformations.order function to the transform
order event and the support case function to the transform case event. So again, here’s the function that
implements the support case event, and here I’m doing something similar that I did in the cloud function
where I’m getting a different ID from the Kinvey user store and attaching it to the body before I save it. And
in this case I’m saving it to a remote ticket system in order to integrate with that ticket system and match the
IDs up appropriately.

And finally, Kinvey offers a host of cloud services that are configurable. Some of these are listed here -- data
store, user lifecycle management with role-based access control, no code configuration based data integration
services for common data providers, cloud caching, notifications, locations, and many more. This is just a
sampling. And Kinvey allows you to configure these through a web-based application, and then easily wire
them up into your own client app.

And Kinvey provides numerous ways to invoke your cloud functions via collection hooks, end points,
and the SDKs. Now collection hooks are data events, so we saw before onPreSave was an example of a
collection hook. So there are hooks right around different data operations, such as fetch and delete and
save. End points are just cloud functions or micro service functions that you can invoke on demand or
in response to some client-side event. And then I’m going to talk a bit about the SDKs. And SDKs are
not traditionally thought of as part of a serverless architecture, but I think they add a lot to the spirit of a
serverless architecture, because they treat the serverless cloud as an extension of the app. So when you’re
invoking your serverless code or invoking an event on your application -- whether that be a iOS native app
or a Progressive web app or a chat bot -- using an SDK allows you to invoke that serverless code as if it
was part of the app and the app language. You don’t have to worry about HTTP or the transporter dealing
with different status codes, or what the proper REST implementation is. And so the SDKs enable app-first
development native to your language or framework of choice. It enables high productivity by removing the
transport and protocol concerns, and ties everything together.

So here, just a couple quick examples of using the SDK. This is using our NativeScript SDK, where in the first
example, I’m doing a simple fetch from a remote data source. Now that remote data source could be Kinvey’s
data store, it could be an integration with sales force, it could be an integration with some REST API. The
point to note here is that this way of retrieving data is the same. The interface is the same regardless of what
data source I am using. So the power of the SDK in the Kinvey serverless platform is that, again, it allows me
to focus on my app’s value without worrying about how do I query Salesforce, how do I query a REST API? I
don’t have to do it differently for each type of data source. I have one way of retrieving data, and that way is

the same no matter what my data source is. And then the second example just shows an example of how I
could just easily invoke a serverless function from my app.

So finally we’re just going to talk about some key design considerations for serverless apps. And things to
keep in mind as you start building your first serverless app, or as you’re expanding your knowledge and
trying to refine. So given that what we stated before as the benefits of serverless -- one of the first best
practice here is to focus on the UX and the value first of your app. Design your user experience, build the
logic that gives your app value, and then as needed extend the app serverless components. So start from
the point of view of the app, and prototype it, build your UI. Utilize -- even if you have a lot of integration
points, utilize something like Kinvey’s data store to prototype your data. As you’re building it out, and as you
see certain functions -- while this could potentially benefit from the scalability of the cloud -- extend the app
with those serverless components.

So second key point here is to federate remote sources. And as I showed with the SDK example, you can
use serverless functions data integration services, or micro services, for external data access or remote API
access. And then the serverless cloud becomes your single interface for all your external systems. So as I
showed in the SDK example, one interface -- regardless of what the external system is. And it simplifies the
communication layer of the client app. I only have one SDK for accessing external data or remote sources.
I only have one interface. And I don’t have to implement a REST communication layer, a Microsoft SQL
communication layer, a salesforce.com communication layer. I have one and the serverless cloud takes care of
the actual communication with the remote systems.

Think small, think modular. So I gave the example earlier of the authentication function versus the data
access function, and how they would have different scaling needs, and how the serverless cloud could
optimize and make those scaling needs unique to each individual function. Overall in your app you should do
the same. Each unit function micro service cloud service should do one job. And that helps to enable those
scaling benefits I mentioned, but it also makes your code easier to maintain and makes any changes that you
have to make to your code lower risk.

Avoid monoliths, avoid large complex micro services that try to do many things -- unless they no longer
become micro services. Group common tasks together when necessary but, again, think small. Think
stateless. Now serverless by its nature is stateless, because the functions are being scaled independently,
because the micro services are being scaled independently. They’re ephemeral. They are scaled up and
scaled down just based on the needs of application. So in and of themselves, they can’t contain any kind of
state. There’s no guarantees that a single instance will be running at any given time. Any service-side state
that you need should be managed using some kind of cloud data store or some key value store. But the
functions and the micro services themselves should be designed in a stateless manner.

So in conclusion, think about your app, not your infrastructure. Think about what value it has, think about
what you want your user experience to be. Enable high productivity by removing infrastructure transport
protocol concerns, scaling concerns, high availability, load balancing from your vocabulary. Just worry about
the value and the UX.

And then have a serverless mindset. Back-end services are an extension of your app. They’re not something
separate that you call. Just think of them as part of your app that you invoke when needed. Make everything
small and modular. Make everything stateless. And finally, build what really matters. Don’t worry about the
rest.

Laura Lewis:

All right. Thank you Michael. We’re going to open up this discussion now and answer any questions that
have come in. Don’t forget to type anything you may be wondering into the chat window. So to kick it off,
what’s the difference between Kinvey Flex Services and AWS Lambda?

Michael Salinger:

So they’re both serverless implementations of function as a service. Flex services also allow the ability to do
micro services in a serverless manner as well. But I think the biggest difference is that Lambda is a general
purpose function as a service system. So it’s there for you to write serverless functions, have them scaled,
and then do what you want with them separately. Whereas Kinvey Flex Services are really part of an app
development platform. So they are a component of a whole toolset that’s used for building your app that
is all integrated together. And so I think the mindset is a little bit different in how both Kinvey and AWS
approach the problem.

Laura Lewis:

Okay, great. What about is serverless only for cloud apps? Can it be implemented for on-premise micro
service apps?

Michael Salinger:

Kinvey -- I mean, sorry, serverless -- is not only for cloud apps. On-premise apps can certainly make use of a
serverless infrastructure, but the serverless component of it should be in the cloud. But that doesn’t preclude
you from writing local mobile client apps, desktop apps even, or all different kinds of experiences that make
use of that cloud infrastructure.

Laura Lewis:

On a similar topic there, how do you optimize performance of your serverless functions?

Michael Salinger:

Really you just use general software development performance practices. You don’t have to do anything
special to optimize the performance of a serverless function, other than, like I said, keep it small and try to
keep the execution time of each function down to a minimum. But using just general purpose performance
considerations that you would use in any general purpose programming language, I think, is all you really
need to do. Because that’s what the serverless clouds are build to handle.

Laura Lewis:

What cloud service provider do you use or do you have your own?

Michael Salinger:

Well Progress Kinvey uses multiple cloud service providers. So we use AWS Lambda, we use Azure, we use
Google Cloud. And I’ve used all three personally as well.

Laura Lewis:

All right. So I have another question in here. This one has a little bit of detail. So my experience so far with
Azure serverless has not been great. Containers as a service are much more expensive built by the [second?]
than your own Docker VM. And in particular, certain essential components like file storage are HDD only, not
SSD. Does this just reflect that Azure is not ready for prime time?

Michael Salinger:

Yeah. So Azure specifically -- their container as a service offering was really just launched within the last
month, I think. And I think that they were doing it kind of probably earlier than they probably should have,
due to competitive pressure.

Laura Lewis:

All right. What’s the difference between Pivotal Cloud Foundry and Progress Kinvey?

Michael Salinger:

So Pivotal Cloud Foundry is -- although they’re moving in a serverless direction -- is really more of a platform
as a service than a serverless architecture. And because with Pivotal, you still have to provision resources.
So because Pivotal is more of an on-prem type solution, you still have to determine, you know, how many
nodes you’re going to have. When you’re deploying a service, you have to determine what its resource needs
are going to be. It’s much more abstracted than doing something as basic as an EC2 instance on Amazon.
But it’s still there. With Progress Kinvey and other more pure serverless providers, none of those constraints
come in. You don’t think about, you know, any of those resource needs at all. Again, you just focus on
developing your application. So Pivotal gets you part-way there by taking away a lot of the thought about it,
but it doesn’t get you all the way there in not thinking about it at all.

Laura Lewis:

All right. Great. Why would I use a cloud function instead of my app’s own web API?

Michael Salinger:

Again, so you would use a cloud function rather than a web API because as you’re developing your
application it would increase your productivity. Rather than having to build the entire web API and stand
up Express.js or something, and then worry about the routing and all the middleware, implementing the
cloud function just allows you, again, to focus on the value that your app provides, rather than all of the
infrastructure that your web API needs.

Laura Lewis:

What does Kinvey do to handle latency between different function invocation?

Michael Salinger:

Yeah. There’s -- I’m trying to think of the right way to answer this question. So the function invocations are --
yeah, I think I’d need to have more of a conversation on what that’s talking about, because I’m not quite sure
what kind of latency he’s talking about or seeing or he’s seen in other providers.

Laura Lewis:

Okay. No problem. If you want to put more detail in the chat, we can do that. Or we can absolutely follow up
with some people afterwards too. We’re not going to be able to get to all of the questions that we see here

today. So just to, I think, close it out with one more here. Can we take advantage of serverless architectures
through on-premise deployments?

Michael Salinger:

So you can, but not as full-featured as you would from a pure serverless. Because one of the chief benefits of
serverless in application development is not thinking about the resources. And in an on-premise deployment,
the developer has to think less about the resources, but there comes a point where in on-prem, since you’re
installing whatever platform you have on [bare metal?], at some point you’re going to hit an allocation where
you need more bare metal. And with the cloud, you know, cloud providers do this as a business. So they’re
making sure that everything is provisioned and ready before you need it. And so I have seen examples
and talked to people where they’ve done on-premise deployments of private clouds and they run into a lot
of the same problems that they ran into pre-cloud where it works for a while, but then they get to a point
where they’re resource-strapped and IT has to provision more hardware in order to scale out the private
cloud. So while private cloud is certainly a viable middle ground or stepping stone, it doesn’t give you the full
productivity benefits or the full scalability benefits that you get from a public cloud provider.

Laura Lewis:

All right. Thank you so much Michael. So thank you for submitting the questions. They were all great. And
I’d also like to thank Michael for joining us today to share his knowledge. We hope you enjoyed the event, and
look forward to having you on future Progress webinars. Be sure to check out our previous presentations on
our website, and follow us on Twitter, LinkedIn, and Facebook. Both notices will go out before the end of the
week. Thank you again, and have a great rest of your day.

11

About Progress

Progress (NASDAQ: PRGS) is a global leader in application
development, empowering enterprises to build mission-critical
business applications to succeed in an evolving business
environment. With offerings spanning web, mobile and data
for on-premise and cloud environments, Progress powers
businesses worldwide, promoting success one application at a
time.
Learn about Progress at www.progress.com
or 1-781-280-4000.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw

 twitter.com/progresssw
 youtube.com/progresssw

For regional international office locations and contact
information, please go to
www.progress.com/worldwide

Progress is a registered trademark of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. Any other

trademarks contained herein are the property of their respective owners.

© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2018/08 | RITM0027683

View Webinar

https://www.progress.com/campaigns/kinvey/what-serverless-means-for-enterprise-apps
https://www.progress.com/campaigns/kinvey/what-serverless-means-for-enterprise-apps
https://www.progress.com/campaigns/kinvey/what-serverless-means-for-enterprise-apps

