
BEYOND
RELATIONAL
MARKLOGIC WHITE PAPER • SEPTEMBER 2015

Organizations face a growing inability to handle the massive volumes of disparate, varied, and

changing data with the relational databases that have been relied on for the past three decades.

For this reason, leading organizations are going beyond relational to embrace a new generation

database: MarkLogic.

CURRENT STATE ASSESSMENT
Is your organization in need of change, or do you think you’re doing all right with your data? The answers to the
questions below provide a baseline assessment to address that question. The more “YES” answers, the more likely
your current database(s) are not meeting your organization’s needs.

YES NO

BUSINESS
QUESTIONS

1. Is there data that is important to your organization that is not in a
database?

✔ û

2. Are there multiple databases with essentially the same data in
them?

✔ û

3. Are there numerous data sources that are not centrally managed by
the IT department?

✔ û

4. Are there large IT projects that have been behind budget or failed to
launch?

✔ û

5. Are there database schemas so complicated that only a small
handful of experts can adequately answer questions about them?

✔ û

TECHNICAL
QUESTIONS

6. Does data modeling ever slow down or hinder the process of
application development?

✔ û

7. Are there relational tables in which column names have changed or
been assigned new meaning “just to make it work”?

✔ û

8. Are there frequent database schema changes each month, and are
some of the changes unsuccessful?

✔ û

9. Are significant time and resources spent figuring out how to scale? ✔ û

10. Are there ever performance problems or bugs that may have
resulted from complicated middleware?

✔ û

Contents
Introduction ...1

Today’s World Of Big Data ...2

Volume

Velocity

Variety

Veracity

Variability

Drowning In A Sea Of Complexity ...3

Data Silos and ETL

“Shadow IT” and Security Lapses

High Costs, Failed Projects, and an Inability to Innovate

Why Relational Databases Aren’t Working ..4

Not Designed to Handle Change

Not Designed for Heterogeneous Data

Not Designed for Scalability And Elasticity

Not Designed for Mixed Workloads

A Mismatch for Modern Application Development

A New Generation Database For Today’s Data..8

Overview of MarkLogic’s Differentiating Features

Leading Organizations Achieving More With MarkLogic

Take Your Data Beyond Relational..12

Recommended Next Steps

More Information

INTRODUCTION
In the past few decades, technology has evolved
rapidly and every aspect of doing business has
changed. Today, more data is collected than ever
before and organizations have great ideas for bigger,
smarter applications. One would think that databases—
where organizations store their most prized asset,
data—would have also changed. But to a large degree,
they haven’t at all.

The dominant technology for storing and managing
data—the relational database—still looks pretty much
the same as it did when first released during the
Cold War, over thirty years ago. Back then, data was
perceived as small, neat, structured, and static because
that was the only way it could be stored. However,
data is not like that. In today’s world, organizations are
confronting the reality that data is big, fast, varied, and
changing. Organizations are no longer just managing a
small handful of systems, but hundreds of systems and
petabytes of data.

The new world of “Big Data” creates an exciting
opportunity, but too often it is just seen as yet another
challenge that IT departments must handle. Today,
IT departments spend most of their time just keeping

their heads above water, managing a complex web of
data silos and frequent ETL (Extract, Transform, Load)
processes to shuffle data around. Then, as individuals
and departments seek their own solutions, “shadow IT”
and security lapses start to appear. Across industries,
high costs and lengthy project timelines are the norm.
Stuck in a state of constant maintenance cycles,
organizations are unable to focus on getting the most
value from all of their data. To some degree, these
challenges have all come about as a result of trying to
use relational databases to solve problems they were
never designed to solve.

Today, organizations cannot rely on just using the one-
size-fits-all relational model. Motivated by the need
to change, organizations are embracing new kinds
of databases. MarkLogic is at the forefront of this
generational shift, providing a database that is a better
fit for all of today’s data. MarkLogic has a more flexible
data model for storing, managing, and searching
massive volumes of varied data, while also maintaining
all of the enterprise capabilities that organizations
require. It is this unique combination that has enabled
leading organizations to go beyond relational and get
more value from more data than ever before.

WHY CHANGE?
Organizations face a growing inability to handle their disparate, varied, and changing data. Only by adopting
new approaches can organizations address this problem and reduce their risk, build smarter applications
faster, and get more business value from their data.

20

30

40

50

Structured

2013

Unstructured

4.4 ZB
10

2020

Inability to Store, Manage,
and Search All of the Data

44 ZB

Explosion of
Heterogeneous Data

OLTP

Warehouse
Reference

Data

Data Marts

ETL ETL

ETL

ETL ETL

Unstructured
DataArchives

1

TODAY’S WORLD
OF BIG DATA
Limited by the technologies of the time, data used to
all look the same. It came into data centers slowly and
orderly, and it was neatly organized as tabular data that
fit into rows and columns joined together across pre-
configured tables. The pace of change was idle, both
for the business and for IT, and that was okay. But that
was the 1980s, and today is much different.

The world of Big Data that we operate in today is well-
characterized by the oft-mentioned three “Vs”—volume,
velocity, and variety. Additionally, two more “Vs” are
increasingly relevant—veracity and variability. Taken
as a whole, all of these “Vs” can be summed up in one
truth: today’s data is big, fast, complex, and changing.

VOLUME
The digital universe is growing 40 percent a year, and
is expected to grow from 4.4 zettabytes in 2013 to 44
zettabytes in 2020 (a zettabyte is 1 trillion gigabytes).1
Paper files are no longer the system of record,
databases are—and that means storing everything.
Organizations today must now handle more data in
more forms across a greater number of systems, and
are expected to manage it efficiently, securely, and
with low overhead. The cost of data storage continues
to drop, and consumers and regulators expect that
organizations can and should store everything.

VELOCITY
Everything is faster in today’s world. Data is created
faster and data changes faster. And, the questions
asked of the data also change faster to meet new
business requirements laid out to handle rapid changes
in market dynamics, new management, on-demand
services, or acquisitions and spin-offs. Today, decisions
get made in minutes, not days, and data to support
those decisions must be delivered the right format

1 IDC. Digital Universe. April 2014 <http://www.emc.com/leadership/digital-
universe/2014iview/executive-summary.htm>

with reduced latency and greater efficiency. Whether
delivering data for sporting events or detecting fraud
at a bank, the need to get data in real-time is no longer
on the wish-list, but is a requirement. The timeline for
application development is also much faster, measured
in weeks, not years. And, those applications must hold
up to torrents of users—users that have a decreased
tolerance for waiting, decreased loyalty, and an
increased desire for personalization.

VARIETY
Variety is one of the biggest challenges of all the “Vs.”
Today’s data is much more varied, or heterogeneous,
than it used to be—about 20 percent is structured
(e.g., transactional, tabular data) and 80 percent
unstructured (e.g., documents, text, emails, images,
video).2 The new unstructured data sources available
are certainly problematic. One study found that
according to 64 percent of businesses, the primary
reason for considering a new approach to Big Data
was the diverse, new, and streaming data sources they
now have to handle.3 But the variety of structured data
is perhaps even more problematic as organizations
struggle to handle the many shapes, sizes, and types of
structured data that are quickly growing in volume and
changing. New applications, mergers and acquisitions,
and repurposing of data are common reasons that lead
to the disparity of structured data.

VERACITY
Veracity has to do with the truthfulness of data, or data
integrity. Data is a highly prized asset and organizations
take great lengths to ensure that their data is accurate
and not corrupted in any way. For this reason, it is
becoming more important to track the data lineage,
or lifecycle of data, including when and where data
originated (its provenance), its on-going history (how

2 Khan et al. Big Data: Survey, Technologies, Opportunities, and Challenges.
Scientific World Journal, 2014 <http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4127205/#B53>

3 New Vantage Partners. Big Data Executive Survey: Themes & Trends. 2012
<http://newvantage.com/wp-content/uploads/2012/12/NVP-Big-Data-Survey-
Themes-Trends.pdf>

Taken as a whole, the ‘Vs’ of big data can be summed up in one
truth: today’s data is big, fast, complex, and changing.”“

2

it changed and by whom), its retention (how long it
should be kept available), and its relevance (what data
provides the best answer). Additionally, organizations
must have strong data governance policies in place
to guard users’ access to the data at a granular level.
These issues are all becoming more important for audit
and compliance reasons, in addition to providing the
ability to run more advanced analytics.

VARIABILITY
Variability refers to the variations in meaning that
data can have depending on context. Variability has
been discussed by a Principal Analyst at Forrester,
Brian Hopkins, who defined it as, “the variability of
meaning in natural language and how to use Big Data
technology to solve them.”4 One example is with the
word “sub”—does it refer to a naval submarine or to
a Subway® sandwich? This problem is about more
than natural language. There are also differences in
how users and data modelers describe basic entities.
An example is with the state of “North Carolina” that
sometimes appears as “N Carolina” or simply “NC.”
How would a database know they are referring to the
same thing, or what the concept of a “state” even is?
People have an easy time deciphering meaningful
knowledge from context, but databases have difficulty
with these semantic challenges. With more data comes
more variations in how people, places, and things are
described, and so the problem is further amplified.

DROWNING IN A SEA OF
COMPLEXITY
Today’s world of Big Data should be an enormous
opportunity, but all too often it is just seen as yet
another challenge. Today, IT departments spend most
of their time keeping their heads above water, and if

4 Hopkins, Brian. “Blogging From the IBM Big Data Symposium - Big Is More
Than Just Big,” 2011 <http://blogs.forrester.com/brian_hopkins/11-05-13-blogging_
from_the_ibm_big_data_symposium_big_is_more_than_just_big>

they do not tackle the complexity head on, it has the
potential to sink the whole enterprise.

DATA SILOS AND ETL
Data silos are reported to be the number one
impediment to Big Data success.5 This is obvious
when looking at most complex enterprise architecture
diagrams that show incompatible legacy systems
woven together with other legacy systems to create
a complex, brittle architecture in which data is un-
shareable and un-usable. In most organizations, only
a few experts may still be around to understand how it
maps to the intricate business rules of the organization.
It is thus not surprising that for most business
intelligence initiatives, the majority of time is just spent
identifying and profiling data sources.6

Data silos were not an intentional part of the design,
but the result of short-term solutions. Most databases
are only designed to support a certain application or
certain type of data. To get data out of those databases
and use it for another purpose in another database, a
process of ETL (Extract, Transform, Load) must occur
to ensure it matches the schema of the new target
database. ETL occurs frequently in most organizations,
creating another data silo each time it is done.

As silos proliferate it becomes more and more difficult
to maintain and connect them. Eventually, developers
begin using “duct tape” maintenance code to connect
various applications together, avoiding the true source
of the problem. This only creates more complexity and
eventually something either stops working, developers
get too frustrated and leave, or new projects are
slowed down to such an extent that progress becomes
hopeless.

5 Oracle. IT Assessment Complexity Survey. 2015 <http://www.oracle.com/us/
corporate/features/it-complexity-assessment-survey-2281110.pdf>

6 Boris Evelson. Boost Your Business Insights By Converging Big Data And BI.
Forrester, March 25, 2015 <https://www.forrester.com/Boost+Your+Business+Insigh
ts+By+Converging+Big+Data+And+BI/fulltext/-/E-RES115633>

Data siloes are reported to be the number one
impediment to Big Data success.”“

3

“SHADOW IT” AND SECURITY LAPSES
Oversight of enterprise data has continued to slip away
from CIOs as employees and departments fix their
own problems by using software that is not overseen
or managed by a centralized IT department. Most
CIOs think they have a few dozen “shadow IT” apps in
use, but more often it is a few hundred. In one survey,
organizations were found to be using an astounding
923 distinct cloud services, and only 9.3 percent met
enterprise security requirements.7 This change is a
direct result of the perceived unresponsiveness to the
needs of the business, and creates enormous risk and

inefficiencies for the organization as a whole.

This is happening as the cost of a lapse in security
continues to grow and cybercriminals use more
sophisticated attacks. An organization’s reputation
can be severely damaged with just one breach,
and a data breach can also be costly. One study
found that a single cybersecurity incident can cost a
company $5.4 Million on average, or $188 per record.8
Unfortunately, protecting data is harder than ever with
the proliferation of data silos that create more entry
points, vulnerabilities, and data leakage.

HIGH COSTS, FAILED PROJECTS, AND AN
INABILITY TO INNOVATE
It is a sad expectation that many IT projects will not
meet deadlines and will be over budget. High costs
and failed projects are the norm, and in fact, half of IT
projects with budgets of over $15 Million run 45 percent
over budget, are 7 percent behind schedule, and deliver
56 percent less functionality than predicted. Even
worse, about 17 percent of IT projects go so bad that
they can threaten the very existence of the company.9

7 Skyhigh. Cloud Adoption and Risk Report - Q1 2015. June 2015 <http://info.
skyhighnetworks.com/rs/skyhighnetworks/images/WP%20CARR%20Q1%202015.
pdf>

8 Ponemon Institute. 2013 Cost of Data Breach Study: Global Analysis. Syman-
tec. 2013 <https://www4.symantec.com/mktginfo/whitepaper/053013_GL_NA_WP_
Ponemon-2013-Cost-of-a-Data-Breach-Report_daiNA_cta72382.pdf>

9 McKinsey & Company. “Delivering large-scale IT projects on time, on budget,
and on value,” October 2012 <http://www.mckinsey.com/insights/business_tech-
nology/delivering_large-scale_it_projects_on_time_on_budget_and_on_value>

This is despite the lengthy planning, enormous
resources, and large teams of brilliant individuals that

work on these projects.

While teams are working on over budget projects
that under deliver, they are not spending time on
the innovative projects that are so critical to the
organization’s success. How can an organization
get value out of Big Data if they cannot devote any
resources to it? Today, 95 percent of all database
spending goes towards relational databases, which
only store about 20 percent of enterprise data.10 That
leaves only 5 percent to spend on managing the other
80 percent of enterprise data. Without change, CIOs
and IT will be left tending a host of legacy systems
and responsibilities as they get outrun by competitors
that devote more resources to innovation and business
transformation.

WHY RELATIONAL DATABASES
AREN’T WORKING
Many of the challenges with Big Data and resulting
complexity seen today can be traced back to relational
databases. There is nothing inherently wrong with
relational databases—they were just never designed to
handle today’s data. This is why the former CIO of the
Federal Government, Vivek Kundra, said back in 2009
that, “this notion of thinking about data in a structured,
relational database is dead.”

First invented in the late 1970s, relational databases
took over from hierarchical mainframe systems
to become the database of choice by the early
1990s. Relational databases met the needs of early
computing very well. They made it possible to decouple
applications from the data and use less custom code,
and gave users more control over querying the data by
using SQL as the common query language.

10 Carl Olofson. Worldwide Database Management Systems 2014–2018
Forecast and 2013 Vendor Shares. IDC, June 2014 <http://www.idc.com/getdoc.
jsp?containerId=248952>

Relational database vendors are still offering users a 1990s-era product,
using code written in the 1980s, designed to solve the data problems of the
1970s, with an idea that came around in the 1960s.”

“

4

http://www.mckinsey.com/insights/business_technology/delivering_large-scale_it_projects_on_time_on_budget_and_on_value
http://www.mckinsey.com/insights/business_technology/delivering_large-scale_it_projects_on_time_on_budget_and_on_value

Throughout the almost 40-year existence of relational
databases, they have continued to improve and the
ecosystems around each vendor’s product have grown,
but the fundamental model for managing data has
remained unchanged. The fact is, relational database
vendors are still offering users a 1990s-era product,
using code written in the 1980s, designed to solve
problems of the 1970s, with an idea that came around
in the 1960s.11 Today, organizations require more than
what relational databases can offer, and the following
sections discuss why.

RELATIONAL DATABASES ARE NOT DESIGNED TO
HANDLE CHANGE
Relational databases organize data in tables with rows
and columns, much like spreadsheets in Microsoft
Excel. Each row represents a unique entry and each
column describes unique attributes. One column is
chosen as the primary key to uniquely identify each row
in the table.

So, for example, if you modeled a relational database
for customers and products they ordered, you might
start by creating a “Customers” table with a column
called “CustomerID” to be used as the primary
key. You would create additional columns for each
attribute about each customer, such as “FirstName,”
“LastName,” and “Address,” defining the type of
data that will be stored in each.12 You then link the
“CustomerID” to another table, “Orders,” that stores
information about a customer’s purchases. Each
row in the “Orders” table would have its own unique
identifier and also a reference to the primary key of the
“Customers” table.

11 It was in 1969 that Edgar “Ted” F. Codd first published his famous paper
internally to IBM. Later, in 1970, the paper was made publicly available. (E.F. Codd,
“A Relational Model of Data for Large Shared Data Banks.” Communications of the
Association for Computing Machinery, Vol 13 No 6 Pgs. 377-387)

12 In the 1980’s, relational databases limited column names to eight characters
and had to be one case. So, column names would be “fname” or “lname.” Now, the
SQL standard is to have 30 character limits for column names.

You continue this process of creating various tables,
ensuring your design meets all of the entity and
referential integrity constraints, and everything is
properly “normalized” so that there are no repeating
columns, that columns are all dependent on their
primary key, and no tables duplicate any information.
Those constraints are what maintain data consistency
and ensure fast queries—hallmarks of the relational
model. This process of designing the data model, or
schema, involves a dedicated team getting together
to decide what tables should be created and what the
column names will be. It is an important process, and
the end result is often proudly depicted with a large
entity-relationship diagram (ERD) that gets printed out
and hung prominently in the hallway.

The problems with this approach are twofold. First,
the process can take months, if not years, depending
on the size of the database. Relational schemas are
complex, and all of the modeling must be done in
advance of loading any data or building the application.
Second, if a change is required after applications are
built on top of the database, it is a time and resource
intensive process that can take another few months or
years. The relational model is like a sensitive, complex
rainforest ecosystem in which one small change can
cause detrimental effects with cascading impacts
across the database and through the application stack.
Even a simple change like adding or replacing a column
in a table might be a million dollar task.13

Today, change occurs frequently, and data modeling is
a huge challenge because of the time and resources
that relational databases require. Each year, billions of
dollars are spent on data modeling and ETL processes
to create and recreate more “perfect” models that will
never change. But they always do.

13 According to one customer at a leading Fortune 100 technology company, the
task of adding a column could take them up to a year and cost over a million dol-
lars. For other more complex data modeling projects involving master data manage-
ment, even lengthier timelines of over five years have been reported.

This notion of thinking about data in a structured,
relational database is dead.”
Vivek Kundra, Federal CIO, July 21, 2009; Open Government and Innovations Conference

“

5

RELATIONAL DATABASES ARE NOT DESIGNED
FOR HETEROGENEOUS DATA
It is surprising that 95 percent of total database
spending is on relational databases but relational
databases are only designed to handle the 20 percent
of data that is structured.14 Organizations face a
growing inability to handle that structured data, while
the other 80 percent, the unstructured data, becomes
completely orphaned despite having enormous value
that is locked up inside it.

Organizations used to only store some key transactional
data and a few basic things about their customers.
Today, however, organizations can no longer cherry-
pick a few key pieces of data. They need to store
just about everything. As the cost of getting the
infrastructure to do that has become reasonable,
organizations can take advantage of the opportunity
to reduce risk and lower costs. There is also an
expectation from customers, partners, and regulators
that the organization should store everything in a usable
format that will benefit them as well.

The growing amount of structured data is a problem
for relational databases because the structure of each
data source is different. The changes that are required
to handle a new data source, as already noted, are
cumbersome and result in more schema complexity.
This is true even when new data represents the same
domain or concepts.

The growing amount of unstructured data also presents
a problem for relational databases. The rows and
columns of a relational database are ideal for storing
sets of values, but most information is composed
of much more than that. Consider something like a
person’s medical record. It includes values (name,
date of birth), relationships (to family members or care
providers, to symptoms and medications), geospatial
data (addresses), metadata (provenance, security
attributes), images (CAT scan), and free text (doctors’
notes, transcripts).

14 IDC, June 2014

Now, imagine putting all of that data into a Microsoft
Excel spreadsheet. This task would require a lot of
ingenuity, and many difficult choices: Should large
blocks of text be broken up or stuffed into a cell in
the table? What about storing new data sources that
come in later? How many columns should there be
for metadata? What about the relationships between
various entities? What about the structure within the
document? What indexes should be created? What if I
want to filter the data by an element that is not defined
by a row or column?

Regardless of the amount of labor and compromise that
has been put into trying to make the relational model
work for everything, the fact remains that it was not
designed for heterogeneous data.

RELATIONAL DATABASES ARE NOT DESIGNED
FOR SCALABILITY AND ELASTICITY
Today, organizations have millions of users and
petabytes of data. They run their applications in the
cloud to deliver dynamic content to millions of desktop,
tablet, and mobile devices across various geographical
locations. To handle this new reality, organizations need
scalability (adding capacity for more data and more
users) and elasticity (the ease in which the system
scales, typically referring to the ability to scale back
down when user demand dissipates).

Unfortunately, scaling relational databases is
challenging. Relational databases are designed to run
on a single server in order to maintain the integrity
of the table mappings and avoid the problems of
distributed computing. With this design, if a system
needs to scale, customers must buy bigger, more
complex, and more expensive proprietary hardware
with more processing power, memory, and storage.
Upgrades are also a challenge, as the organization
must go through a lengthy acquisition process, and
then often take the system offline to actually make the
change. This is all happening while the number of users
continues to increase, causing more and more strain
and increased risk on the under-provisioned resources.

It is surprising that 95 percent of total database spend is on relational
databases but relational databases are only designed to handle the 20
percent of data that is structured.”

“

6

To handle these concerns, relational database
vendors have come out with a whole assortment
of improvements. Today, the evolution of relational
databases allows them to use more complex
architectures, relying on a “master-slave” model in
which the “slaves” are additional servers that can
handle replicated data or data that is “sharded” (divided
and distributed among multiple servers, or hosts)
to ease the workload on the master server. Other
enhancements such as shared storage, in-memory
processing, better use of replicas, distributed caching,
and other new relational architectures have certainly
made relational databases more scalable. Under the
covers, however, it is not hard to find a single system

and a single point-of-failure.15

The enhancements to relational databases also come
with high costs and big trade-offs. For example,
when data is distributed across a relational database
it is typically based on pre-defined queries in order
to maintain performance. In other words, flexibility
is sacrificed for performance. Additionally, relational
databases are not designed to scale back down—they
are highly inelastic. Once data has been distributed and
additional space allocated, it is almost impossible to
“undistribute” that data.

RELATIONAL DATABASES ARE NOT DESIGNED
FOR MIXED WORKLOADS
“Mixed workloads” refers to the ability to handle both
operational and analytical workloads. Operational
workloads encompass the day-to-day business
transactions that are occurring in real-time, such as
purchases being made by large numbers of customers.
Analytical workloads are those operations intended for
business intelligence and data mining, such as when an
analyst wants to look at an aggregate of purchases over
a specified time period.

15 For example, Oracle RAC is a “clustered” relational database that uses a
cluster-aware file system, but there is still a shared disk subsystem underneath.

In the mid-1990s a split arose between databases
optimized for operational workloads, known as
OLTP systems (online transaction processing), and
databases optimized for analytical workloads, known
as OLAP systems (online analytical processing). In
OLTP systems, the data is modeled to be optimal for
the application built on it, requiring consistent, speedy
transactions. In OLAP systems, the data is modeled to
be optimal for slicing and dicing, including aggregates
and trends. Before long, elegant models were
developed as experts agreed and disagreed on the best
ways to model data for different scenarios. This is when
“star schemas,” “snowflake schemas,” and “OLAP
hypercubes” entered the lingo of data modelers.

Unfortunately, the split between operational and
analytical systems contributed to the creation of
disparate data marts, data warehouses, reference
data stores, and archives that have proliferated out of
necessity. Data from operational systems was moved
via ETL to a central data warehouse designed to be the
warehouse for all business decisions. However, that
broke down when it could not answer new and different
questions that appeared. So, another ETL process
was used to move a certain subset of data to a data
mart. Other systems were set up to capture reference
data. Then an archive system captured all the historical
data from all of the systems. Each time a new question
needed to be asked or a new application built, a newer,
better model was created—and no model was ever the
same. What was just a simple schema and handful of
databases soon multiplied to hundreds.

This is one of the reasons why most IT departments
today spend the majority of their time and money just
maintaining the myriad of systems in the organization.
The problem is that the relational model forces
complexity upon IT departments because it was not
designed to deliver information to different sets of users
in the right way at the right time.

The problem is that the relational model forces complexity upon IT
departments because it was not designed to deliver information to different
sets of users in the right way at the right time.”

“

7

RELATIONAL DATABASES ARE A MISMATCH FOR
MODERN APPLICATION DEVELOPMENT

Modern applications are built using object-oriented
programming languages such as Java, JavaScript,
Python, and C# to name a few. These languages treat
data structures as “objects” that contain data and
code (i.e. attributes and methods). The problem is
that this way of handling data is very different from
how relational databases handle data, creating an
impedance mismatch between the database and
application programming.

To get around the impedance mismatch, developers
use a technique called object-relational mapping
(ORM), a bi-directional active-active mapping between
the objects in the application layer and the data as it
is represented in the relational database schema. With
ORM, application developers get to work with business
rules and logic and generate views of the data in a
way that makes the most sense from an application
development perspective. With this approach,
databases are viewed more simply as the places
where data is persisted and where stored procedures
are kept. A wide number of ORM tools are available,
helping simplify application development with relational
databases. Some examples of ORM tools include
Hibernate for Java, ActiveRecord for Ruby on Rails,
Doctrine for PHP, and SQLAlchemy for Python.

Unfortunately, ORM is also seen as a poor workaround
for a systemic problem with relational databases.
ORM has even been called the “Vietnam of computer
science” because it “represents a quagmire which
starts well, gets more complicated as time passes, and
before long entraps its users in a commitment that has
no clear demarcation point, no clear win conditions,
and no clear exit strategy.”16 Many other publications
have continued to show how ORM does more harm
than good.17

16 Ted Neward. Blog Post on “The Blog Ride,” June 26, 2006 <http://blogs.
tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx>

17 See OrmHate by Martin Fowler <http://martinfowler.com/bliki/OrmHate.html>,
Object-Relational Mapping Is the Vietnam of Computer Science by Jeff Atwood,
ORM Is an Anti-Pattern by Laurie Voss <http://seldo.com/weblog/2011/08/11/
orm_is_an_antipattern>, ORM is An Offensive Anti-Pattern by Yegor Bugayenko
<http://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html>, and
many others.

ORM, rather than preserving the interesting aspects
of the data inside an object, instead extracts the data
away, tearing apart the data and adding more overhead
in the process. And this happens after the data was
already split up across tables through the process
of normalization to begin with. Going back to the
example of a person’s medical record, just consider
all of the various data that is part of the record that
must be split across tables in a relational database.
After “shredding” the data across tables, the data must
then be reassembled to display or aggregate the data
in the application layer in order to be presented to the
user. This imposes lots of overhead, lots of mapping,
and a custom framework or lots of joins in order to get
materialized views of the business entity (i.e. a form or
piece of paper).

The result of the traditional relational architecture is
performance loss and more opportunities for buggy
code. In today’s fast-paced application development
cycles, with users demanding more interactivity
and responsiveness, the relational model shows its
flaws. Rather than having to find workarounds for
the mismatched relational model, developers are
embracing new models that involve less abstraction
and show higher performance.

A NEW GENERATION DATABASE
FOR TODAY’S DATA
MarkLogic is a NoSQL (“Not only SQL”) database that
is at the forefront of a shift away from the one-size-fits-
all relational databases of the past three decades. There
are many features of MarkLogic that make it a good fit
for today’s data, but there are four things MarkLogic
has that make it really unique:

1. A flexible data model for storing today’s varied,
changing, and disparate data

2. Built-in search and query to get more value out of
data at any point-in-time

3. Scalability and elasticity to handle the massive,
changing volumes of data

4. Enterprise features required to run mission-critical
enterprise applications

“ The result of the traditional relational architecture is performance
loss and more opportunities for buggy code.”

8

OVERVIEW OF MARKLOGIC’S
DIFFERENTIATING FEATURES

FLEXIBLE DATA MODEL
MarkLogic is a multi-model database designed to
natively store and rapidly query JSON, XML, and RDF
triples, geospatial data, and large binaries (e.g., images,
video). This capability makes MarkLogic much more
adept at handling a wider variety of data types and
data structures than relational databases, and makes it
easier to handle changes to the data model as the data
changes.

JSON and XML are both document formats, and are
the primary way that MarkLogic stores data. Contrasted
with the tables in a relational database, documents
are much more human-readable, and provide a more
natural approach to modeling the rich, variable, and
complex data that today’s organizations work with. By
using a richer data model, organizations can get more
value out of their data.

Documents are also a better match for modern
application development because they avoid the
impedance mismatch problem. The document model
allows developers to maintain the integrity of data
throughout every tier of an application stack. For
example, developers can have JSON in the database,
in the application layer, and the user interface. This is a

more agile approach, and is a good fit for the growing
amount of JavaScript used in developing modern web
applications.

Another advantage of MarkLogic’s data model is
that no schema, or structure, needs to be defined in
advance of loading data to MarkLogic. The term for
this is “schema-agnostic.” MarkLogic allows users to
store documents with different schemas and change
specific schemas without disrupting others. This
powerful capability also allows users to rapidly combine
relational data tables with different models—all inside
MarkLogic.

MarkLogic also has graph database capabilities
because it natively stores RDF triples, the language of
semantics. At a high level, semantics is a data model
for linking together two entities (people, places, or
things) based on the relationship between them to
form a triple. When linked together, triples form a graph
that is machine readable, and can be used to infer
new facts. MarkLogic can store hundreds of billions of
triples right alongside, or even inside, JSON or XML
documents.

MarkLogic is the only enterprise database that
combines a document store and triple store. This
unique capability makes it faster and easier to model
data in the format that makes the most sense, and
enhances the value that organizations can get from

“ The first MarkLogic project took 60 days. It was estimated to take
3,000 days with existing technology.”

Paolo Pelizzoli, Global Head of Architecture, Global Technology Operations at Broadridge Financial Solutions

COMPARING NOSQL DATABASES
As a result of the pressing need for change there has been an explosion of new data management
technologies in the past few years, all aimed at providing better options to handle today’s data. There are
many open source NoSQL databases of various types, including document stores, graph stores, column
stores, and key-value stores. There are some general similarities between them such as the ability to scale
on commodity hardware, but each type of database is actually quite different. If you are looking to better
understand the NoSQL landscape, download the eBook, Enterprise NoSQL for Dummies, available for free at
info.marklogic.com/nosql-for-dummies.html.

9

http://info.marklogic.com/nosql-for-dummies.html

their data. As a whole, MarkLogic’s data model is much
more flexible than the relational model. It provides a
platform to build smarter applications faster, and more
agility to handle changes as they occur.

The improvements over relational databases can be
dramatic: “The first MarkLogic project took 60 days.
It was estimated to take 3,000 days with existing
technology,” said Paolo Pelizzoli, Global Head of
Architecture, Global Technology Operations at
Broadridge Financial Solutions.

BUILT-IN SEARCH AND QUERY
To search data fast and accurately, a database requires
indexes. Database indexes are similar to those in the
back of books, providing a listing of information within
the book that can be quickly referenced rather than
scanning the entire volume. With most databases,
indexing is typically seen as a secondary task to storing
data. Indexing is a difficult process in which users must
figure out which indexes need to be created to answer
which questions, what the performance implications of
each index are, and how the indexes will be maintained.
Then, to get full-text search, full-text indexes are
required. With relational databases, this means adding
additional software that must be setup and maintained
alongside the database.

MarkLogic works differently, having a best-in-class
indexing capability and full-text search built-in as part
of the product. MarkLogic indexes the content and
structure of data as it is loaded, and has numerous
indexes (e.g., range indexes, triple index, geospatial
index) that can be toggled on and off. MarkLogic’s
indexes make it easy to answer both simple and
sophisticated queries using a variety of query
languages—JavaScript, XQuery, SPARQL (the query
language for semantics), and of course, SQL. An
example of a sophisticated query is, “Find all earnings
and rankings of professional athletes who Michael
Jordan played with during his career. Restrict the

results to those athletes who live in New York and were
mentioned in reliable news sources after January 2015.
Rank the candidate results by relevance.”

Answering such multi-dimensional questions is not
trivial, and it would either be extremely difficult or
impossible to achieve with a relational database. A
relational database would have difficulty modeling the
relationships between Michael Jordan and the athletes
he played with, and finding the specific mentions
within news sources, which would be text documents.
A relational database would also not be able to do
relevance ranking in a way that a search engine such
as Google does relevance—it would just return a list of
results based on a simple ordering of values.

On the other hand, this kind of sophisticated query
is one that MarkLogic can handle with relatively
little code. The issues of relevance and full-text are
resolved by MarkLogic’s rich data model and powerful
indexes that are designed to answer the same types
of questions anyone would ask with SQL in a relational
database, and much more. Even if the questions
change, that is okay. MarkLogic is prepared to handle
new and unexpected queries that come along, without
requiring users to reconfigure the data and indexes as
in a relational database. And, MarkLogic returns the
results with sub-second response times over hundreds
of terabytes of data, all within a system in which the
data is consistently and reliably maintained.

SCALABILITY AND ELASTICITY
Rather than be constrained by the limits of single server
architectures, MarkLogic is designed for massive scale
on distributed systems. MarkLogic scales “horizontally,”
meaning that it runs on multiple servers that work
together, each sharing part of the load. Using this
approach, MarkLogic can operate across hundreds of
servers, petabytes of data, and billions of documents—
and still manage to process tens of thousands of
transactions per second. And it can do all of this on

MarkLogic is designed to handle the volume, variety, and velocity of Big
Data like other NoSQL solutions, AND has the enterprise features that made
last-generation relational databases so reliable.”

“

1 0

inexpensive commodity hardware operating in any
environment, whether it is in on hardware that is sitting
on-premise or in a cloud environment such as Amazon
Web Services.

Massive scale is impressive, but what is perhaps even
more important is MarkLogic’s elasticity. MarkLogic’s
unique architecture makes it possible to quickly and
easily add or remove nodes in a cluster so that the
database stays in line with performance needs without
costly over-provisioning. There is not any complex
sharding of data or architectural workarounds—data
is automatically rebalanced across a cluster when
nodes are added or removed. This is one of the reasons
that MarkLogic is so easy to use when it comes to
administration.

ENTERPRISE FEATURES
There are common misconceptions that NoSQL is not
for serious applications, that NoSQL is just for startups
or just a place for organizations to put their non-critical
data. That is simply not true with MarkLogic.

MarkLogic has all of the critical enterprise features
that made last-generation relational databases so
reliable, and which are absolutely critical for storing and
managing enterprise data. Some of MarkLogic’s key
enterprise features include:

• ACID transactions to ensure data consistency and
avoid data loss or corruption

• Certified security that allows MarkLogic to run in
enterprise data centers

• High availability and disaster recovery so that
data is always available

• Performance monitoring to keep a close eye on
how resources are provisioned and used

• Enterprise management tools that provide
automated approaches to common tasks

With MarkLogic, all of these features are more than just
boxes on a checklist. MarkLogic has proven all of them

in mission-critical systems at the U.S. Department of
Defense, large investment banks, healthcare payers,
global media organizations, and many other industries
in which success is not optional.

LEADING ORGANIZATIONS ACHIEVING MORE
WITH MARKLOGIC

Hundreds of organizations have embraced change and
innovation by using MarkLogic to power the future of
their businesses. These examples highlight some of the
many successes.

RUNNING AN OPERATIONAL TRADE SYSTEM
AT A LARGE BANK
A top-5 investment bank replaced 20 relational
databases with one MarkLogic database. MarkLogic
now runs the derivative trade store at the bank,
managing over 100,000 trades per day, and 32 million
live deals in the system at any one time. This high
volume generates cash flow risks in excess of $100
million. In addition to the huge cost savings from using
MarkLogic, the bank also achieved a global, real-time,
unified, and accurate view of their derivative trading
business.

ENROLLING MILLIONS OF BENEFICIARIES
THROUGH HEALTHCARE.GOV
The Centers for Medicare & Medicaid Services (CMS)
provides access to health coverage for millions of
Americans through HealthCare.gov—validating eligibility
requirements for insurance plan enrollment across
multiple federal data sources and handling hundreds of
thousands of concurrent users, all with zero data loss.
In the first two years, the system enabled 12 million
Americans to sign-up for health insurance. This success
is in stark comparison to some of the failed state health
exchanges, failures that have even led to one state to
take a relational database vendor to court.18

18 Shelby Stebens. “Oracle sues Oregon officials in healthcare website dispute,”
Reuters, February 27, 2015 <http://www.reuters.com/article/2015/02/27/us-usa-
healthcare-oregon-idUSKBN0LV2LK20150227>

MarkLogic is proven in mission-critical systems at the U.S. Department
of Defense, large investment banks, healthcare payers, global media
organizations, and many other industries in which success is not optional.”

“

1 1

PERFORMANCE INCREASES FOR THE BBC’s
iPLAYER STREAMING SERVICE
The iPlayer is the BBC’s TV streaming service in the
UK, handling over 3 billion program requests per year.
To manage the massive scalability and performance
requirements, the BBC team moved from using
relational technology to MarkLogic as the main
component for storing and delivering metadata about
the BBC’s programs. The BBC already experienced
success building a dynamic content delivery platform
on MarkLogic for the 2012 Olympics, and wanted to
leverage the scalability and flexibility of MarkLogic for
iPlayer as well. Once implemented, queries that used
to take 20 seconds with SQL only took 20 milliseconds
with MarkLogic—orders of magnitude better.

TAKE YOUR DATA
BEYOND RELATIONAL
Making the move from the old world to the new may
seem daunting at first. For that reason it is often better
to start with a smaller project and then ramp up. Below,
we provide some recommendations to help plan the
transition to using NoSQL.

RECOMMENDED NEXT STEPS

ESTABLISH A SENSE OF URGENCY
Seeing the need to change is critical in order to move
past any complacency that may be preventing adoption
of NoSQL. With a sense of urgency established, it is
then possible to establish a vision and gain buy-in.

BUILD THE RIGHT TEAM
Success requires great technology, but it also requires
great people and processes. It is important to identify
both decision-makers and implementers in the
organization, and understand what processes will inhibit
and enable the initiative to take shape.

START WITH THE RIGHT PROJECT
Choosing the right use case to begin with is critical.
Often times, it is best to start with a small but impactful
project that avoids unnecessary disruption. MarkLogic
experts can work with you to ensure that your project is
the right fit for a MarkLogic solution.

ENGAGE MARKLOGIC EARLY
Dedicated MarkLogic experts are available who have
more combined NoSQL experience than any team in
the business. It is important to engage with them early-
on during the development phase, when support is

most critical.

MORE INFORMATION

• NoSQL for Dummies eBook – Get an overview of
NoSQL databases with a free eBook
info.marklogic.com/nosql-for-dummies

• What is MarkLogic? – Read more about
MarkLogic’s unique set of features at
marklogic.com/what-is-marklogic

• Inside MarkLogic White Paper – Understand
the internals that make MarkLogic so powerful
marklogic.com/resources/inside-marklogic-server

• Schedule a Meeting – Discuss your particular
use case with a MarkLogic sales representative by
contacting us at sales@marklogic.com

MarkLogic has helped us get more rapid product development and to
engage the business users with the IT team. So IT is seen now as very
much business critical, part of the solution rather than the problem to
delivering the solution.”
Andrea Powell, CIO of CABI (The Centre for Biosciences and Agriculture International)

“

1 2

http://info.marklogic.com/nosql-for-dummies
http://www.marklogic.com/what-is-marklogic/
http://marklogic.com/resources/inside-marklogic-server
mailto:sales@marklogic.com

	Introduction
	The New World
of Big Data
	Volume
	Velocity
	Variety
	Veracity
	Variability

	Drowning In A Sea Of Complexity
	Data Siloes And ETL
	“Shadow IT” and Security Lapses
	High Costs, Failed Projects, And An Inability to Innovate

	Relational Databases: Never Designed For Today’s Data
	Relational Databases Are Not Designed To Handle Change
	Relational Databases Are Not Designed For Heterogeneous Data
	Relational Databases Are Not Designed For Scalability And Elasticity
	Relational Databases Are Not Designed For Mixed Workloads
	Relational Databases Are A Mismatch for Modern Application Development

	A New Generation Database For Today’s Data
	Overview of MarkLogic’s
Differentiating Features
	Leading Organizations Achieving More With MarkLogic

	Take Your Data
Beyond Relational
	Recommended Next Steps
	More Information

