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About This Book

Purpose
CTOs, CIOs, senior architects, developers, analysts, and others at
the forefront of the tech industry are becoming aware of an emerg‐
ing database category that is both evolutionary and suddenly neces‐
sary: multi-model databases. A multi-model database is an integrated
data management solution that allows you to use data from different
sources and formats in a simplified way.

This book describes how the multi-model database provides an ele‐
gant solution to the problem of heterogeneous data. This new class
of database naturally allows heterogeneous data, breaks down tech‐
nical data silos, and avoids the complexity of integrating multiple
data stores for multiple data types. Organizations using multi-model
databases are discovering and embracing this class of database capa‐
bilities to realize new benefits with their data by reducing complex‐
ity, saving money, taking advantage of opportunities, reducing risk,
and shortening time to value.

The intention of this book is to define the category of multi-model
databases. It does make an assumption that you have at least a cur‐
sory knowledge of NoSQL database management systems.

Audience
The audience for this book is the following:

• Anyone managing complex and changing data requirements
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• Anyone who needs to integrate structured, semi-structured, and
unstructured data or is interested in doing so

• CTOs, CIOS, senior analysts, and architects who are overseeing
and guiding projects within large organizations

• Strategic consultants who support large organizations
• People who follow analysts, such as other analysts, CTOs, CIOs,

and journalists
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1 For simplicity, we will sometimes blur the line between a “database” and a “database
management system” and use the simpler term “database” where convenient.

Introduction

Database management systems (DBMS) have been around for a
long time, and each of us has a set of preconceived notions about
what they are, and what they can be. These preconceptions vary
depending on when we started our careers, whether we lived
through the shift from hierarchical to relational databases, and if we
have gained exposure to NoSQL yet. Our understanding of data‐
bases also varies depending on which areas of information technol‐
ogy we work in, ranging from transactional processing to web apps,
to business intelligence (BI) and analytics.

For example, those of us who started in the mainframe COBOL era
understand hierarchical tree-structures and processing flat files
whose structures are defined inside of a COBOL program. Curi‐
ously, many of us who have adopted cutting-edge NoSQL databases
have some understanding of hierarchical tree structures. Working
on almost any system during the relational era ensures knowledge of
SQL and relational data modeling around rows, columns, keys, and
joins. A more rarified group of us know ontology modeling,
Resource Description Framework (RDF), and semantic or graph-
based databases.

Each of these database1 types has its own, unique advantages. As
data continues to grow in volume and variety, so, too, does our need
to utilize this variety of formats and databases—and often to link the
various data stores together using extract, transform, and load
(ETL) jobs and data transformations.
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Unfortunately, each new data store selected becomes a “technical
silo”—a new data store with boundaries between them that are both
physical, because the data is stored in different places, and concep‐
tual, because the data is stored in fundamentally different forms.
Relational and non- (or not-only) relational (NoSQL) databases are
different from each other, and different from graph databases, and
different from other stores.

Until recently, this forced a difficult choice. Choose the relational
model or the document model or graph type models; scale up or
scale out; perform analytical or transactional work; or choose a few
and cobble them together with ETL jobs and integration code.

Fortunately, the DBMS landscape is evolving rapidly. What organi‐
zations really want is a way to use all their data in an integrated way,
so why shouldn’t database products support this out of the box?
Integrated data storage and access—across data types and functions
—is exactly the goal of multi-model database management plat‐
forms.

A multi-model database supports multiple data models in their nat‐
ural form within a single, integrated backend, and uses data stand‐
ards and query standards appropriate to each model. Queries are
extended or combined to provide seamless query across all the sup‐
ported data models. Indexing, parsing, and processing standards
appropriate to the data model are included in the core database
product.

This definition illustrates that simply storing various data types—as
one can do in relational database management systems (or RDBMS)
binary large object (or BLOB) or a filesystem directory—does not a
multi-model database make. The true multi-model database can do
the following:

• Index data in natural ways for the models supported
• Parse and index the inherent structure in self-describing data

formats such as JSON, XML, and RDF
• Implement standards such as query languages and validation or

schema definition languages for the models supported
• Provide integrated APIs that not only query the individual data

models, but also query across multiple data models
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• Implement data processing languages native to each supported
data model

Provided these capabilities, a multi-model database does not require
you to define the shape or schema of the data before loading it;
instead, it uses the inherent structure in the data being stored. This
makes data management flexible and adaptive, able to respond to
the needs of downstream applications and changing business
requirements.

With this understanding of what a multi-model database is, we can
move on to what a multi-model database is for and describe use
cases. That said, any system that stores and accesses different types
of data will benefit from a multi-model database. An enterprise or
complex use case involving many existing data systems will naturally
encounter many different data formats, so we will focus on data
integration/silo-busting as a key use case. Another scenario is the
integration of structured data handling with unstructured or semi-
structured data. This often has been addressed by standing up a
relational or NoSQL database and manually integrating it with a
search platform but can be included in one multi-model database.
We will also focus on a particular multi-model combination of
documents with graph structures, which is a natural model for many
domains with interrelated business entities.

Some Terms You’ll Need to Know
Table P-1 provides definitions to some terms that will come up fre‐
quently in this book.

Table P-1. Key terms related to multi-model databases

Term Description
Multi-model A multi-model database supports multiple data models in their natural form

within a single, integrated backend, and uses data standards and query
standards appropriate to each model. Queries are extended or combined to
provide seamless query across all the supported data models. Indexing, parsing,
and processing standards appropriate to the data model are included in the core
database product.
Document, graph, relational, and key-value models are examples of data models
that can be supported by a multi-model database.

Multiquery
engine

A query layer that allows multiple ways to query one data model.
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Term Description
Query
language

A language designed to identify subsets of data in a database, and often to
manipulate the data as the data is retrieved through joins, subselects, or other
changes.
Every data model other than text has a query standard, and even text query has
natural, purpose-built query syntaxes.

 Model Query language
 XML XQuery for query

XSLT for manipulation
 JSON JavaScript for manipulation
 RDF SPARQL
 Relational SQL
 Text Search
Data indexing All databases create one suite of indexes on data as it is ingested to allow fast

query of that data. True multi-model will have one integrated suite of indexes
across data models that allows a single, composable query to quickly retrieve
data across all the data models, simultaneously.

Canonical
model

A type of data model that presents data entities and relationships in a
standardized, simple form. Also known as a common data model.

Polyglot
programming

Using several programming languages within a given application.

Polyglot
persistence

Using several data models for different aspects of a system or enterprise.
The polyglot persistence approach is motivated by the idea that data should be
stored in the format and DBMS that best fits the data stored and the
functionality required. Traditionally, this meant choosing a different DBMS for
each type of data and having the application communicate with the right data
store. However, a true multi-model DBMS provides polyglot persistence with a
single, integrated backend.

Multiproduct
multi-model

A multi-model system with multi-model query languages and APIs, but which
are powered by a collection of separate data stores internally.
These products provide one simplified API for data access, but use a façade or
orchestration layer atop multiple internal databases, which adds to complexity
and can affect the databases’ consistency, redundancy, security, and scalability.

Shared
nothing (SN)
architecture

A distributed computing architecture in which each node is independent and
self-sufficient, and there is neither a single point of contention across the
system, nor a single point of failure. More specifically, none of the nodes share
memory or disk storage.
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CHAPTER 1

The Current Landscape

Somewhere in the business, someone is requesting a unified view of
data from IT for information that’s actually stored across multiple
source systems within the organization. This person wants a single
report, a single web page, or some single “pane of glass” that she can
can look through to view some information crucial to her organiza‐
tion’s success and to bolster a level of confidence in her division’s
ability to execute and deliver accurate information to help the busi‐
ness succeed.

In addition to this, businesses are also realizing that simply having a
“single view” alone is not enough, as the need to transact business
across organizational silos becomes increasingly necessary. Hearing
the phrase, “That’s a different department; please hold while I trans‐
fer you” is tolerated less frequently by many of today’s digital first
consumers.

What’s the reality? The data is in silos. Data is spread out across
mainframes, relational systems, filesystems, Microsoft SharePoint,
email attachments, desktops, local shares; it’s everywhere! (See
Figure 1-1.) For any one person in an organization, there are multi‐
ple sources of data available.
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Figure 1-1. What we have: data in silos

Because the data isn’t integrated, and reports still need to be created,
we often find the business performing “stare and compare” report‐
ing and “swivel chair integrations.” This is when a person queries
one system, cuts and pastes the results into Microsoft Excel or
PowerPoint, swivels his chair, queries the next system, and repeats
until he has all the information he thinks he needs. The final result is
another silo of information manifested in an Excel or PowerPoint
report that ultimately winds up in someone’s email somewhere.

This type of integration is manual, error-prone, and takes too long
to get the required answers that business can act upon. So, what
happens next? Fix it! Business submits a request to IT to integrate
the information. This results in a data mart and the creation of a
new silo. There will be DBMS provisioning, reporting schema
design, index optimizations, and finally some form of ETL to pro‐
duce a report. If the mart has already been created, modifications to
the existing schemas and an update to ETL processes to populate the
new values will be required. And the cycle continues.

The sources for these silos are varied and make sense in the contexts
they are created:

• To be able to ensure a business can quickly report its finances
and other information, that business asks IT to integrate multi‐
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ple, disparate sources of data, creating a new data silo. Some
thought might have been given to improving or even consoli‐
dating existing systems, but IT assessed the landscape of exist‐
ing data silos, and changes were daunting.

• Many silos have been stood up in support of specific applica‐
tions for critical business needs, each application often coupled
with its own unique backend system, even though many likely
contain data duplicated across existing silos. And the data is
worse than just duplicated: it’s transformed. Data might be
sourced from the same record as other data elsewhere, but it no
longer looks the same, and in some cases has diverged, causing
a master data problem.

• Overlapping systems with similar datasets and purposes are
acquired as a result of mergers and acquisitions with other com‐
panies, each of which had fragmented, siloed data!

Before we look at the reality of what IT is going to face in integrating
disparate and various systems, let’s ask ourselves the importance of
being able to integrate data by looking briefly at a few real-world
scenarios. If we’re not able to integrate data successfully, the chal‐
lenges and potential problems to our business go far beyond not
being able to generate a unified report. If we’re not able to integrate
enterprise resource planning (ERP) systems, are we reporting our
finances and taxes correctly to the government? If we work in regu‐
lated industries such as financial services, what fines will we face if
we’re not able to rapidly respond to audits from financial regulatory
boards on an integrated view of data requiring the ability to answer
questions from ad hoc queries? If we’re not able to integrate HR sys‐
tems for employees, how can we be sure that an employee who has
left the company for new opportunities or who has been terminated
is no longer receiving paychecks and no longer has access to facili‐
ties and company computer systems? If you’re a healthcare organi‐
zation and you’re not able to integrate systems, how can you be
certain that you have all the information needed to ensure the right
treatment? What if you prescribe a medicine or procedure that is
contraindicated for a patient taking another medicine that you were
unaware of? These types of challenges are real and are being faced
by organizations—if not entire industries—daily.

In 2004, I was as a systems engineer for ERP-IT at Sun Microsys‐
tems. At that job, I helped integrate our ERP systems. In fact, we
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end-of-lifed 80 legacy servers hosting 2 custom, home-grown appli‐
cations to integrate all of Sun’s ERP data into what was at the time
the world’s largest Oracle instance. But the silos remained! I do
know of people who left the company or were laid off who contin‐
ued for a long time to receive paychecks and have access to campus
buildings and company computer networks! This is because of the
challenge of HR data being in silos, and updates to one system not
propagating to other critical systems. The amazing thing is that even
though I witnessed this in 2005, those same problems still exist!

Data silos are embedded in or support mature systems that have
been implemented over long periods of time and have grown fragile.
To begin to work our way out of this mess and survey the landscape,
we frequently see mainframes, relational systems, and filesystems
from which we’ll need to gather data. As one CIO who had lived
through many acquisitions told us, “You go to work with the archi‐
tecture you have, not the one you designed.”

Types of Databases in Common Use
Let’s take a look at the nature of each of these typical data store
types: mainframes, relational, and filesystems.

Mainframe
IBM first introduced IMS DBMS, the hierarchical filesystem, in
1966 in advance of the Apollo moon mission. It relied on a tree-like
data structure—which reflects the many hierarchical relationships
we see in the real world.

The hierarchical approach puts every item of data in an inverted-
tree structure, extending downward in a series of parent-child rela‐
tionships. This provides a high-performance path to a given bit of
data. (See Figure 4-1.)

The challenge with the mainframe is that it’s inflexible, expensive,
and difficult to program. Queries that follow a database’s hierarchi‐
cal structure can be fast, but others might be very slow. There are
also legacy interfaces and proprietary APIs that only a handful of
people in the organization might be comfortable with or even have
enough knowledge of to be able to use them.

Mainframes continue to be a viable mainstay, with security, availa‐
bility, and superior data server capability topping the list of consid‐
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1 Ray Shaw, “Is the mainframe dead?” ITWire, January 20, 2017.

erations.1 But to integrate information with a mainframe, you first
need to get the data out of the mainframe; and in many organiza‐
tions, this is the first major hurdle.

Relational Databases
In 1970, E.F. Codd turned the world of databases on its head. In fact,
the concept of a relational database was so groundbreaking, so mon‐
umental, that in 1981 Codd received the A.M. Turing Award for his
contribution to the theory and practice of database management
systems. Codd’s ideas changed the way people thought about data‐
bases and became the standard for database management systems.

A relational database has a succinct mathematical definition based
on the relational calculus: a means of organizing and querying data
via joins (roughly “tables,” in normal language) against a primary
key.

Previously, accessing data required sophisticated knowledge and was
incredibly expensive and slow. This was because it was inexorably
tied to the application for which it was conceived. In Codd’s model,
the database’s schema, or logical organization, is disconnected from
physical information storage.

In 1970, it wasn’t instantly apparent that the relational database
model was better than existing models. But eventually it became
clear that the relational model was more simple and flexible because
SQL (invented in 1972) allowed users to conduct ad hoc queries that
can be optimized in the database rather than in the application. SQL
is declarative in that it asks the database for what it wants and does
not inform the database how it wants the task performed. Thus, SQL
became the standard query language for relational databases.

Relational databases have continued to dominate in the subsequent
45 years. With their ability to store and query tabular data, they
proved capable of handling most online transaction-oriented appli‐
cations and most data warehouse applications. When their rigid
adherence to tabular data structures created problems, clever pro‐
grammers circumvented the issues with stored procedures, BLOBs,
object-relational mappings, and so on.

Types of Databases in Common Use | 5

http://www.itwire.com/shawthing/76516-is-the-mainframe-dead.html


The arrival of the personal computer offered low-cost computing
power that allowed any employee to input data. This coincided with
the development of object-oriented (OO) methods and, of course,
the internet.

In the 1970s, ’80s, and ’90s, the ease and flexibility of relational data‐
bases made them the predominant choice for financial records,
manufacturing and logistical information, and personnel data. The
majority of routine data transactions—accessing bank accounts,
using credit cards, trading stocks, making travel reservations, buy‐
ing things online—all modeled and stored information in relational
structures. As data growth and transaction loads increased, these
databases could be scaled up by installing them on larger and ever-
more powerful servers, and database vendors optimized their prod‐
ucts for these large platforms.

Unfortunately, scaling out by adding parallel servers that work
together in a cluster is more difficult with relational technology.
Data is split into dozens or hundreds of tables, which are typically
stored independently and must be joined back together to access
complete records. This joining process is slow enough on one
server; when distributed across many servers, joins become more
expensive, and performance suffers. To work around this, relational
databases tend to replicate to read-only copies to increase perfor‐
mance. This approach risks introducing data integrity issues by try‐
ing to manage separate copies of the data (likely in a different
schema). It also uses expensive, proprietary hardware.

Data modeling in the relational era
One of the foundational elements of Codd was the third normal
form (3NF), which required a rigid reduction of data to reduce
ambiguity. In an era of expensive storage and compute power, 3NF
eliminated redundancy by breaking records into their most atomic
form and reusing that data across records via joins. This eliminated
redundancy and insured atomicity, among other benefits. Today
however, storage is cheap. And although this approach works well
for well-structured data sources, it fails to incorporate communica‐
tion in a shape that’s more natural for humans to parse. Trying to
model all conversations, documents, emails, and so on within rows
and columns becomes impossible.

6 | Chapter 1: The Current Landscape



The challenge with ETL
But from the “when you have a hammer, everything becomes a nail”
department, relational databases emerged as the de facto standard
for storing integrated data in most organizations. After a relational
schema is populated, it is simple to query using SQL, and most
developers and analysts can write SQL queries. The real challenge,
though, is in creating a schema against which queries will be issued.
Different uses and users need different queries; and all too often,
this is provided by creating different schemas and copies of the data.
Even in a new, green-field system, there will typically be one trans‐
actional system with a normalized schema and a separate analytic
data warehouse, with a separate (star or snowflake) dimensional
schema.

Data integration use cases make this problem even more difficult. To
appropriately capture and integrate all the existing schemas (and
possibly mainframe data and text content) that you want to integrate
takes a tremendous amount of time and coordination between busi‐
ness units, subject matter experts, and implementers. When a model
is finally settled upon by various stakeholders, a tremendous
amount of work is required to do the following:

• Extract the information needed from source systems,
• Transform the data to fit the new schema, and
• Load the data into the new schema.

And thus, ETL. Data movement and system-to-system connectivity
proliferate to move data around the enterprise in hopes of integrat‐
ing the data into a unified schema that can provide a unified view of
data.

We’ll illustrate this challenge in more detail when we contrast this
relational approach with the multi-model approach to data integra‐
tion in Chapter 2. But most of us are already very familiar with the
problems with this. A new target schema for integrating source con‐
tent is designed with the questions the business wants to ask of the
data today. ETL works great if the source system’s schemas don’t
change and if the target schema to be used for unification doesn’t
change. But what regularly happens is the business changes the
questions it wants to ask of the data, requiring updates to the target
schema. Source systems might also adapt and update their schemas
to support different areas of the business. A business might acquire
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another company, and then an entire new set of source systems will
need to be included in the integration design. In any of these scenar‐
ios, ETL jobs will require updates.

Often, the goal of integrating data into a target relational schema is
not met because the goal posts for success keep moving whenever
source systems change or the target system schema changes, requir‐
ing the supporting ETL to change. Years can be spent on integration
projects that never successfully integrate all the data they were ini‐
tially scoped to consolidate. This is how organizations find them‐
selves two and a half years into a one-year integration project.

The arrows in Figure 1-2 are not by any means to scale. Initial mod‐
eling of data using relational tools can take months, even close to a
year, before subsequent activities can begin. In addition, are big
design trade-offs to be addressed. You can begin with a sample of
data and not examine all potential sources. This can be integrated
quickly but inflexibly and will require change later when new sour‐
ces are introduced. Or you can aim for complex and “flexible” using
full requirements; however, this can lead to poor performance and
extended time to implement. The truth for the majority of data inte‐
gration projects is we don’t know what sources of data we might
integrate in the future. So even if you have “full requirements” at a
point in time, they will change in the future if any new source or
query type is introduced.

Figure 1-2. Integrating data with relational

Based on the model, ETL will be designed in support of transform‐
ing this data, and the data will be consumed into the target database.
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Consumer applications being developed on separate project time‐
lines will require exports of the data to their environments so they
can develop in anticipation of the unified schema. As we step
through the software development lifecycle for any IT organization,
we find ourselves “ETLing” the data to consume it as well as copying
and migrating data and supporting data (e.g., lookup tables, refer‐
ences, and data for consumer projects) to a multitude of environ‐
ments for development, testing, and deployment. This work must be
performed for all sources and potentially for all consumers. If any‐
thing breaks in the ETL strategy along this path, it’s game over: go
back to design or your previous step, and start over.

When we finally make it to deploy, that’s when users can begin
actually asking questions of the data. After the data is deployed, any‐
one can now query it with SQL. But first, it takes too long to get
here. There’s too much churn in the previous steps. Second, if you
succeed in devising an enterprise warehouse schema for all the data,
that schema might be too complex for all but a handful of experts to
understand. Then, you’re limited to having only the few people who
can understand it write applications against it. An interesting phe‐
nomenon can occur in this situation in which subsets of the data
will subsequently be ETL’d out of the unified source into a more
query-friendly data mart for others to access—and another silo is
born!

All of our components must be completely synchronized before we
deploy. Until the data is delivered in deploy, it remains inaccessible
to the business as developers and modelers churn on it to make it fit
the target schema. This is why so many data integration projects fail
to deliver.

Schema-first versus schema-later
The problem with using relational tools, ETL, and traditional tech‐
nologies for integration projects is that they are schema-first. These
tools are schema-driven, not data-driven. You first must define the
schema for integration, which requires extensive design and model‐
ing. This model will be out of date the day you begin because busi‐
ness requirements and sources of data are always changing. When
you put the schema first, it becomes the roadblock to all other inte‐
gration efforts. You might see the familiarity of schema-first as it
pertains to a master data management (MDM) project as well. But
there is a solution to this problem!
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A multi-model database gives us the ability to implement and realize
our own schema-later. A multi-model database is unique in that it
separates data ingestion from data organization. Traditional tools
require that we define how we are going to organize the data before
we load it. Not so with multi-model. By providing a system that
gives us the ability to load data as is and access it immediately for
analysis and discovery, we can begin to work with the data from the
start of any project and then lay schemas on top of it when needed.
This data-driven approach gives us the ability to deploy meaningful
information to consumers sooner, rather than later. Schema-later
allows us to work with the data and add a schema to it simultane‐
ously! We’ll be covering just how multi-model databases can do this
in much greater detail in the coming chapters.

Filesystem
Now, we often don’t think of text as a data model, but it very much
is. Text is a form, or shape, of data that we’ll want to address in a
multi-model database. Structured query in a relational system is
great when we have some idea of what we’re looking for. If we know
the table names and column names, we have some idea of where to
query for what we’re looking for. But when we’re not sure where the
data might reside in a document or record, and we want to be able
to ask any question we want to find of any piece of the data to find
what we’re looking for, we want to be able to search text.

We might want to search text within a relational system, or we might
want to search documents stored in SharePoint or on a filesystem.
Most large systems have text, or evolve to include text. Organiza‐
tions go to great lengths to improve query and search, either shred‐
ding documents into relational systems, augmenting their
SharePoint team sites with lists, or bolting on an external search
engine. It’s common to see systems implemented that are a combi‐
nation of structured, transactional data stored in a relational data‐
base that’s been augmented with some sort of search engine for
discovery, for which fuzzy relevance ranking is required.

Text has meaning in search. The more times a search term is
repeated within a document, the more relevant that document might
be to our search. Words can occur in phrases; they have proximity
to one another; and they can happen in the context of other words
or the structure of a document, such as a header, footer, a paragraph,
or in metadata. Words have relevance and weight. Text is a different
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type of data from traditional database systems, traditionally requir‐
ing different indexes and a different API for querying. If we want to
include any text documents or fields in a unified view, we’ll need to
address where text fits in multi-model, and it does so in the context
of search. Search is the query language for text. Search engines index
text and structure, and these indexes are then often integrated with
the results of other queries in an application layer to help us find the
data we’re looking for. But as we’ll find out, in a multi-model data‐
base, search and query can be handled by a single, unified API.

Many times, text is locked within binaries. It’s not uncommon to
find artifacts like Java Objects or Microsoft Word documents persis‐
ted as BLOBs or Character Large OBjects (CLOBs) within a rela‐
tional system. BLOBs and CLOBs are typically large files. On their
own, BLOBs provide no meaning to the database system as to what
their contents are. They are opaque. They could contain a Word
document, an image, a video—anything binary. They have to be
handled in a special way through application logic because a DBMS
has no way of understanding the contents of a BLOB file in order to
know how to deal with it. CLOBs are only marginally better than
BLOBs in that a DBMS will understand the object stored is textual.
However, CLOBs typically don’t give you much more transparency
into the text given the performance overhead of how RDMBS data‐
bases index data.

Often, CLOB data that a business would like to query today is
extracted via some custom process into columns in a relational
table, with the remainder of the document stored in a CLOB in a
column that essentially becomes opaque to any search or query.
During search and query of the columns available, the business will
stumble upon some insight that makes it realize it would like to
query additional information from the CLOB’d document. It will
then submit a request to IT. IT will then need to schedule the work,
and then update the existing schema to accept the new data and
update its extraction process to pull the new information and popu‐
late the newly added columns to the schema. The process to accom‐
plish this task, given traditional release cycles in IT, can typically
take months! But that business wants and needs answers today.
Waiting months to see new data in its queries adds to the friction
between business and IT. This is solely the result of using relational
systems to store this data. Conversely, because Java Objects can be
saved as XML or JSON and because Word documents are essentially
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ZIP files of XML parts, if we use a multi-model database, we can
store the information all readily available for search and query
without requiring additional requests to IT to update any processes
or schemas. The effort to use these data sources in their natural
form is minimized.

The Desired Solution
We’ve addressed mainframes, relational systems, and filesystems, as
these are the primary sources of data we’re grappling with in the
organization today. There might be others, too, and with any of
these data stores comes a considerable load of mental inertia and
physical behaviors required for people to interact with and make use
of their data across all these different systems.

A benefit of multi-model—and why we find more and more organi‐
zations embracing multi-model databases—is that even though for
any one person there are multiple sources of data (Figure 1-1), with
a multi-model database, we can implement solutions with one
source of data that provides different lenses to many different con‐
sumers requiring different unified views across disparate data mod‐
els and formats all contained within a single database, as
demonstrated in Figure 1-3.
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Figure 1-3. The goal: a multi-model database in action

Figure 1-3 illustrates the desired end state for many solutions. As the
glue that binds disparate sources of information into a unified view,
multi-model databases have emerged and are being used to create
solutions in which data is aggregated quickly and can provide deliv‐
ery to multiple consumers via multiple formats in the form of a uni‐
fied view. In the following chapters, we’ll dig deeper into how a
multi-model database can get us to this desired end state quickly.
We’ll also cover how we work with data using a multi-model
approach, and how this contrasts with a relational approach. We’ll
also examine the significant benefits realized in terms of the reduc‐
tion in time and level of effort required to implement a solution in
multi-model as well as the overall reduction of required ETL and
data movement in these solutions.
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CHAPTER 2

The Rise of NoSQL

In early 2009, Johan Oskarsson organized an event to discuss “open
source distributed, nonrelational databases,” during which he and a
friend coined the term NoSQL (not SQL). The acronym attempted
to label the emergence of an increasing number of nonrelational,
distributed data stores, including open source clones of Google’s
BigTable/MapReduce and Amazon’s Dynamo.

The rise of these systems can be attributed to the rise of big data; the
volume, variety, and velocity of data in industries began rapidly
increasing with the rise of the internet and the increase of power
and proliferation of mobile and computing devices. Rows and col‐
umns alone weren’t going to cut it anymore, and so new systems
emerged to tackle some of the use cases for which traditional rela‐
tional approaches were no longer a good fit for the data models or
fast enough or scalable enough to meet the increased demand.

NoSQL technologies might not be databases in the traditional sense,
meaning that many of them do not provide both transactional integ‐
rity and real-time results, and some of them provide neither. Each
resulted from an effort to alleviate specific limitations found in the
RDBMS world that were preventing their architects from complet‐
ing a specific type of task, and they all made trade-offs to get there.
Whether it was tackling “hot row” lock contention, horizontal scale,
sparse-data performance problems, or single-schema induced
rigidity, they are much more narrowly focused in purpose than their
RDBMS predecessors. Many weren’t designed to be enterprise plat‐
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forms for building ACID transactional, real-time applications. But
one of the core motivations was building them to scale.

And although NoSQL suggested exclusion of SQL, the meaning
transmogrified into “not only SQL,” a clear indication that SQL can
be included under the NoSQL banner. An exciting time to be sure.
These new databases provided agility within their logical and physi‐
cal data models, providing repositories that allowed for the rapid
ingest and query of data in new formats and in new languages. This,
in turn, provided organizations that had to this point been continu‐
ally bogged down in an all-encompassing, traditional relational
approach with opportunities for rapid application development.
Under the banner of NoSQL, the following four major types of data‐
bases emerged, paving the way for the more encompassing type
known as multi-model:

• Key-value
• Wide column
• Document
• Graph

A multi-model database is designed to support these and other data
models against a single, integrated backend. With that in mind, let’s
begin by taking a closer look at some of the different models that
may be supported by multi-model in isolation. It’s all about using
the right tool at the right time for the right job.

Key-Value
A key-value store is a data storage paradigm designed for storing,
retrieving, and managing associative arrays, a data structure more
commonly known today as a dictionary or hash. Dictionaries con‐
tain a collection of objects, or records, which in turn can have many
different fields within them, each containing data. These records are
stored and retrieved by using a key that uniquely identifies the
record, and is used to quickly find the data within the database.
Figure 2-1 presents some typical examples.
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Figure 2-1. Examples of key-value models

Key-value stores work great as long as all you care about querying is
the keys. And you must know the keys to be able to find the associ‐
ated object, because the object itself will be opaque to search and
query.

For example, suppose that you’ve created an online service for users.
Users can sign in to your service using their username. You can use
their username as the key. You always have this in your application
because the user provides it, and you then can use that key to
quickly and easily look up the user’s profile so that you can decide
which information to serve. The user’s profile information can be
stored as text or binary, or in whatever format you want to save the
value. This might work fine for you.

However, key-value stores are similar to traditional file cabinets with
no cross-references. You file things one way—and that’s it. If you
want to find things in a different way, you need to pull all the objects
out and look through them. Because of this, key-value stores can’t
do analytics. Analytic queries require looking across multiple
records. This is why analytics on key-value stores are almost always
done with the help of a separate (usually batch-oriented) technology.

When planning your use case, you might not think you need ana‐
lytic queries for your application at first, but you almost always do.
If your problem is to find an efficient and scalable way to store and
retrieve user profiles, a key-value store might look ideal. But how
long will it be until you want to understand which other users are
similar to another user? Or to find all the users that share certain
traits?
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Wide Column/Key-Value
A wide column store is a type of key-value database. It adds a table-
like layer and a SQL-like language on top of an internal multidimen‐
sional key-value engine. Unlike a relational database, the names and
format of the columns can vary from row to row in the same table.
We can view a wide-column store as a two-dimensional key-value
store. Let’s look at some of its pros and cons.

Pros:

• Fast puts and gets
• Massive scalability
• Easy to shard and replicate
• Data colocation
• Sparsely populated
• List, map, and set data types

Cons:

• Must carefully design key
• Hierarchical JSON or XML difficult to “shred” into flat columns
• Secondary indexes required to query outside of the hierarchical

key
• No standard query API or language
• Must handcode all joins in app

Document
A document database organizes data using self-describing, hierarch‐
ical formats such as JSON and XML. The document model often
maps to business problems very naturally, and in some sense, it is a
reaction to the relational model.

The main benefit of the document model is that it is human-
oriented and not necessarily predetermined. In other words, all the
data—no matter how long or how sparse—is stored in a document.
Human beings have been using documents for a couple thousand
years. For example, in literature, shipping invoices, insurance appli‐
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cations, and your local newspaper, there is a hierarchy. There are
introductions, sections and subsections, and paragraphs and senten‐
ces, and clauses. Document models reflect how people think,
whereas relational systems require people to think in terms of rows
and columns.

For example, let’s consider a user profile, similar to the one we dis‐
cussed in our key-value example. It has a visible hierarchical struc‐
ture. The profile has a summary and an experience section. Inside
the experience, you probably have a number of jobs, and each job
has dates. This hierarchy organizes data in a way that works for peo‐
ple. Just to highlight that it is a hierarchy, you can imagine the same
thing as a mathematical tree structure. And if you serialize this user
profile as JSON or XML, you will have a list of fields that include a
name, a summary, and an experience. The interesting thing about
this is that in today’s hierarchical models, unlike the ones in the
1970s, everything is self-describing. Every one of these fields has a
tag that indicates what it is.

Document stores can be used as key-value stores. As Figure 2-2
demonstrates, in the document model, the name of the document,
often referred to as its ID or URI, is the key, and the document is the
object being stored. This comes with the benefit of being able to
search and query within the objects, unlike a key-value store. If you
don’t need to search and query within the document, this type of
store might be overkill for a key-value use case. But in a document
database, the text and structure are all queryable, so we can now do
analytic queries across documents.
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Figure 2-2. Example of a document model

Over time, the document model emerged as the most popular of the
NoSQL data models to date. Documents are the most flexible of the
models because they represent normal human communication.
Most people think in terms of documents, be they Word documents,
web forms, books, magazine articles, Java objects, messages, or
emails. Information is exchanged within or between organizations
in document format. This predates JSON and even XML. Electronic
data interchange (EDI) is a good example. The record as document
format is actually not new. Today, we can find documents every‐
where, and the most prevalent types for storage are JSON and XML.

As we’ll see, a multi-model database provides even more flexibility
for deployment and use than document stores. Right now, let’s
review the pros and cons of the document model.

Pros:

• Fast development
• Schema-agnostic
• Natural for humans
• Data “de-normalized” into natural units for fast storage and

retrieval without joins
• Queries everything in context
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• Can query for relevance

Cons:

• Documents represent trees naturally, but not graphs. Cycles or
rejoining relationships such as among people, customers, and
providers cannot be captured purely in a document.

• Storage and update granularity. It’s often cheaper to update one
cell in a table than an entire document.

Graph
A graph database is a database that uses graph structures with nodes,
edges, and properties to represent and store data (see Figure 2-4). A
key concept of the system is the graph (or edge or relationship),
which directly relates data items in the store. The relationships allow
data in the store to be linked directly, and, in many cases, retrieved
with a single operation. In this space, we see two major forms of
graph store emerge: the property store and a triple store.

Property Graph Database
A property graph database has a more generalized structure than a
triple store, using graph structures with nodes, edges, and properties
to represent and store data. Property graph stores can store graphs
of different types, such as undirected graphs, hypergraphs, and
weighted graphs. Graph databases use proprietary languages and
focus on paths and navigation from node to node, as illustrated in
Figure 2-4, rather than generic queries of the graph.

Graph databases provide index-free adjacency, meaning that every
element contains a direct pointer to its adjacent elements, and no
index lookups are necessary. General graph databases that can store
any graph are distinct from specialized graph databases such as tri‐
ple stores. Property graphs are node-centric by design and allow
simple and rapid retrieval of complex hierarchical structures that are
difficult to model in relational systems.

Pros:

• Fast development of relationships
• Simple retrieval of hierarchical structures
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• Quick and easy path traversal
• Great for path analytics (e.g., counts and aggregates)

Cons:

• No standards defined for storage and query
• No definition of semantics for edge relationships, so no ability

to query the meaning of the graph
• Graphs stored in a silo, separate from the data from which it’s

created

Figure 2-3. Example of data in a graph model

Triple Stores
Triple stores are a database used for defining and querying semantic
graphs. In fact, the type of graph is a directed-label graph. Triple
stores are edge-centric and based on the industry standard Resource
Description Framework (RDF). RDF is designed for storing state‐
ments in the form of subject-predicate-object called triples (see
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1 Davide Alocci et al., “Property Graph vs RDF Triple Store: A Comparison on Glycan
Substructure Search”, Plos One 10, no. 12 (2015), doi:10.1371/journal.pone.0144578.

Figure 2-3). RDF triple stores use a list of edges, many of which are
properties of a node and not critical to the graph structure itself.1

Triple stores query by using the WC3 standard SPARQL and can
apply rules encoded in ontologies to derive new data from base facts.
Triples represent the association between two entities, and the object
of one triple can be the subject of another triple. They form a graph-
like representation of data with nodes and edges that are without
hierarchy and are machine readable—easy to share, easy to com‐
bine.

RDF also has a formal semantics which allows graph-matching
queries. You can find all the matching graph patterns where a person
knows a person named Bob, where Bob works for a company that is
a subsidiary of a company named Hooli. This is typically done via
the SPARQL query language.

Figure 2-4. Data in a triple

Pros:

• Unlimited flexibility—model any structure
• Runtime definition of types and relationships
• Relate an entity to anything in any way
• Query relationship patterns
• Use standard query language: SPARQL
• Create maximal context around data

Cons:

• Highly normalized
• Many joins required to reconstruct entities represented as

triples
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2 Luca Garulli, “Multi-Model storage 1/2 one product” (presented at the NoSQL Matters
2012 keynote).

• Many joins required for nontrivial query and projection

For more information on the various types of NoSQL, see Adam
Fowler’s excellent reference book NoSQL for Dummies (Wiley). He
also tracks the NoSQL space and regularly self-publishes NoSQL
update reports.

Multi-Model
A multi-model database is designed to support multiple data models
against a single, integrated backend. Document, graph, relational,
and key-value models are examples of data models that can be sup‐
ported by a multi-model database.

The first time the word “multi-model” was associated with databases
has been attributed to Luca Garulli in May 2012 during his keynote
address “NoSQL Adoption—What’s the Next Step?“2 at the NoSQL
Matters conference. Luca envisioned the evolution of first genera‐
tion NoSQL products into new products with more features able to
be used by multiple use cases. He had the foresight to articulate that
a single, integrated NoSQL product to maintain and manage and
develop for was much more beneficial than plumbing and kludging
different, separate NoSQL systems together to provide a similar
result. One product providing many faces on data can allow us to
realize goals more quickly and consistently than stitching things
together manually and then having to constantly maintain and
update our code for those disparate resources while having to
address each system’s differences in abilities to scale and perform, as
well as model, access, and secure data.

Table 2-1 shows the database types that some vendors in the multi-
model space handle.

Table 2-1. The database types supported by multi-model vendors

DBMS Relational
model

Document
model

Key-value
store model

Wide-column
model

Graph
model

ArangoDB N Y Y N Y
Couchbase N Y Y N N
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DBMS Relational
model

Document
model

Key-value
store model

Wide-column
model

Graph
model

MarkLogic N Y Y N Y
OrientDB N N Y N Y
PostgreSQL Y Y Y N N

Some of these systems existed long before Luca’s presentation, and
the level of support for the various systems noted in Table 2-1 varies
widely, including the ability to query across models, fully index the
internal structure of a model, transactional support (ACID/BASE),
and optimization for query planning across models.

Multi-model databases can support different models either within a
single engine or via layers on top of an engine. Underlying a layered
architecture, each data model is supported by a separate component.
Layers may abstract the underlying data store or even additional
engines in support of multiple models.

Although native support for relational models isn’t supported for
some of the aforementioned databases, this really just means that
you can’t create tables and/or store a model in the traditional rela‐
tional sense. Taken further, this translates to you not being able to
do efficient indexed joins with relational data within these systems.
However, a row in a relational table becomes a document in a docu‐
ment database, and although the document model allows you to use
entities without normalizing them to fit a relational model, docu‐
ment indexing and APIs allow developers using systems such as
Couchbase and MarkLogic to model views for relational consumers.
You can then query documents in those systems using SQL. Couch‐
base provides SQL capabilities through its N1QL API, and Mark‐
Logic provides SQL capabilities through standard SQL-92 SQL.

Keeping in mind all the models we’ve covered so far, let’s revisit our
multi-model database definition:

A database that supports multiple data models in their natural form
within a single, integrated backend, and uses data standards and query
standards appropriate to each model. Queries are extended or combined
to provide seamless query across all the supported data models. Index‐
ing, parsing, and processing standards appropriate to the data model are
included in the core database product.

To be a “real” multi-model DBMS then, these products must per‐
form the following additional tasks for at least two different data
models:
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• Allow ingesting of data as is and storing data in its most natural
form:
— Documents
— Business objects
— Text
— Graphs
— Tables
— Geospatial coordinate

• Provide storage in native form:
— JSON
— Text
— RDF
— XML
— Binary

• Index all text and structure of information on ingest:
— Search indexing should not be a bolt-on or separate process

but fully integrated into the system and usable out of the box.
• Provide a simple unified interface to clients while querying data

in native form:
— Unified, standards-based APIs

• Use schemas where needed (relational data) and desired (latent
schemas in document data, triples for semantic data, XSDs for
XML data):
— Schemas might not be required as a condition prior to load‐

ing data, but they are still important because consumers of a
multi-model database will adhere to schemas.

• Maintain high performance for queries across all data models
supporting operating/transactional use cases:
— Unified database engine with unified indexes

• Make security easier by using one security model to cover
everything rather than multiple, different security models for
multiple data stores.
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3 Peter Bailis, Joseph M. Hellerstein, and Michael Stonebraker, Readings in Database Sys‐
tems, 5th Edition (Cambridge: MIT Press, 2015).

• Improve scalability and fault tolerance through caching and
clustering of a single storage repository.

That’s quite a list. But despite what you may have heard from most
NoSQL vendors, there are multi-model databases that provide all
these capabilities in a single product. MarkLogic Server is one such
database.

Is Hadoop a Multi-Model Database?
No. Hadoop is a Java-based programming framework that supports
the processing and storage of extremely large datasets in a dis‐
tributed computing environment. Hadoop stores many types of data
using a metadata layer and a filesystem layer. This does not meet our
definition of a database, and Hadoop lacks tools to search, query,
and modify the data without considerable assembly. Hadoop distri‐
butions are provided as a suite of tools, loosely integrated, with con‐
siderable effort required to assemble, depending on your use case.
Consequently, people use a variety of tools to achieve those goals,
and the subsequent proliferation of technologies in the Hadoop eco‐
system can create levels of complexity and silos of data that mirror
traditional enterprise architectures.

Readings in Database Systems, aka The Red Book, provides an up-to-
date compilation of the latest papers in DBMS applications reviewed
by database experts Peter Bailis, Joseph Hellerstein, and Michael
Stonebreaker. In the fifth edition, the authors discuss many of the
limitations of Hadoop, along with the state of databases and their
purpose today.3 It is a very interesting read. In the Red Book, the
authors point out that Hadoop is load as is, as you can load anything
to a filesystem. Developers can then decide what to do with the data
later. But the insight from the Red Book is that Hadoop essentially
allows you to create a traditional data warehouse on inexpensive
storage from a library of modular data warehouse parts. These parts,
or course, require assembly by programmers. As a result, although
data agility and heterogeneity provided by Hadoop Distributed File
System (HDFS) are of interest, Hadoop’s utility with regard to use as
a database or for any distributed applications remains to be estab‐
lished.
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Unfortunately, Hadoop arrived with much hype and was put under
the NoSQL umbrella due to some of the components it ships with.
However, Hadoop is not a database and not a multi-model database.
It is a platform that has some utility with analytics and observe-the-
business type functions at scale, for which requirements for real-
time transactions are not a factor.

With regard to data integration, Hadoop helped solve the data ingest
problem, given that a uniform schema is not required to load data to
a filesystem; so in this respect, it allows you to add your schema
later. But a tremendous amount of effort and skill is needed to trans‐
form the data and assemble systems on top of the data to make it
useful. Multi-model databases can actually provide an excellent
complement to Hadoop because they have the ability to rapidly pull
in data from HDFS and make it actionable with much less effort
than using what comes with Hadoop.

Can NoSQL Be ACID?
Yes. NoSQL systems provide the ability to load data quickly and
scale out massively, and when applied to the correct use case can be
very powerful tools. They are not without some limitations though.
Used incorrectly, they can solve a short-term problem successfully
while adding another data silo to the overall architecture over the
long term. Vendors attempting to define this rapidly emerging space
unfortunately spread some misinformation as well.

Many of the new NoSQL solutions were designed for distributed
computing and sacrificed the four basic tenets of RDBMS known by
the acronym ACID. ACID stands for atomicity, consistency, isola‐
tion, and durability. ACID defines a set of properties that will guar‐
antee reliability in the world of database transactions. Let’s take a
closer look at these properties:

Atomicity
This means that if you have multiple statements in a transac‐
tion, all parts of the transaction need to be successful; if any one
of them fails, the entire transaction will also fail.

Consistency
A guarantee that the database will go from one valid state into
another when a transaction commits.
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4 David Gorbet, “I is for Isolation, That’s Good Enough for Me!” MarkLogic.com, Janu‐
ary 19, 2016.

5 Shira Ovide, “Apple Acquires FoundationDB”, the Wall Street Journal, March 24, 2015.
6 “MarkLogic World 2013 Keynote: Gary Bloom”, YouTube video, posted by MarkLogic,

April 9, 2013.

Isolation
If you execute your transactions concurrently, you can generally
treat those transactions as being unaware of each other, as if
they are being executed serially.4

Durability
If a transaction commits (inserts data into the database, updates
a document, or deletes something), those changes are going to
persist, even in the case of a system failure.

ACID is what allows a database to guarantee that users are looking
at consistent and correct data.

One alternative to ACID is BASE: basic availability, soft-state, and
eventual consistency.

Many NoSQL technologies use the BASE model. Out of this was
born an incorrect notion that NoSQL systems could not be transac‐
tional—a must for enterprise computing. This suggested that
NoSQL databases had to be used offline or in research, observe-the-
business capacities. To run the business on these systems, additional
application logic would be required to ensure transactional consis‐
tency and that no data is lost. NoSQL and ACID are, however,
orthogonal. One does not cause the other. FoundationDB (before it
was acquired by Apple),5 MarkLogic, and Neo4J all have imple‐
mented ACID-supporting NoSQL database systems. In his Mark‐
Logic World 2013 keynote address, CEO Gary Bloom explained that
MarkLogic was built to be ACID from the ground up by its founder,
Christopher Lindblad, as part of being enterprise-ready.6 This
spawned the term Enterprise NoSQL.

Some systems will claim ACID, but ACID across one
document is not the same as ACID across the dataset.
Likewise, eventual consistency and strong consistency
are not the same as formal consistency.
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7 Jeffrey Cohen et al., “Mad Skills: New Analysis Practices for Big Data” (presented by
Ritwika Ghosh at VLDB 2009, November 10, 2015).

With Enterprise NoSQL databases capable of performing many of
the essential functions of relational databases, and with an exponen‐
tial rise in the volume and variety of data being stored, the popular‐
ity of NoSQL has exploded since 2009.

The Modern DBMS
You can find a great primer to the motivations and goals for all these
types of NoSQL systems in a paper “MAD Skills: New Analysis Prac‐
tices for Big Data,” presented at a scholarly database conference,
VLDB 09.7 The insights and goals for the system the authors
describe still resonate and are incredibly relevant today. They argue
that with data acquisition and storage becoming increasingly afford‐
able, a new type of system would be required to empower data ana‐
lysts to examine and use data outside of the traditional enterprise
data warehouse and business intelligence (BI) tools commonly used.
They focused explicitly on data warehouses, but it’s easy to see the
relevance to operational and transactional systems as well. The
authors stated that a modern system capable of keeping up with the
increasing pace of data would need to be magnetic, agile, and deep.
Let’s examine these further:

Magnetic
Traditional relational systems tend to repel new data sources. If
information doesn’t fit a preexisting relational schema, it’s drop‐
ped on the floor. A considerable amount of effort is required to
load data into the warehouse for use by BI tools, with design,
cleansing, and preparation required before data is even loaded.
Given the pace of data, a system should be magnetic in that it
allows you to load all data despite its format, model, or data
quality niceties.

Agile
Data warehousing orthodoxy is based on long-range, careful
design and planning. Given the growing numbers of data sour‐
ces and increasingly sophisticated and mission-critical data
analyses, a modern system must instead allow analysts to easily
ingest, digest, produce, and adapt data at a rapid pace. This
requires a database that’s physical and logical contents can be in
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continuous rapid evolution. And even though the data models
can be iterated upon, how those models are accessed must also
be flexible. While SQL is the sole point of entry for relational
query, an agile system would allow you to interact with models
from a variety of languages and methods.

Deep
Due to system constraints on storage and compute, analysts
often work with a subset, or sample of the data. Analysts still
might bring subsets of data into a single-client, memory-bound
application for analysis such as R or Excel. A deep system would
allow users to store everything, and analyze everything, without
limiting data to scale, size, or scope. The analysis should be able
to be pushed to the database itself. The database should serve as
a runtime engine for algorithm analysis.

To be clear, multi-model was not born out of the MAD Skills paper,
but the paper certainly provided some keen observations on the
challenges and complexity of working with data in silos and cer‐
tainly inspired many in the NoSQL movement and likely some of
the multi-model databases we see emerging today. There was a year
or so during which you couldn’t attend a NoSQL meetup without
hearing someone reference this paper. I’ve always appreciated the
requirements it set for modern data management systems. There‐
fore, I include magnetic, agile, and deep here as good standards for
us to evaluate multi-model systems against.

The multi-model database has emerged as a present-day modern
DBMS to let us load information as is (magnetic), iterate on the
physical and logical models of the data in place through a variety of
methods and languages (agile), and scale out horizontally to store
information at scale and perform analysis at scale (deep).

We know the problem: our data is in silos. We see a solution: a
multi-model database. We understand some of the history and char‐
acteristics of a multi-model database. For our solution, we’ll aim to
use a multi-model database that is hardened, provides ACID capa‐
bilities, security, and consistency for multiple models of data within
a single engine. We’ll next take a look at how we work to integrate
data in a multi-model database. This will help to explain some of the
preceding concepts and illustrate why people are so excited to learn
more about multi-model databases and how they can use them.
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CHAPTER 3

A Multi-Model Database for
Data Integration

So, you’ve decided to use a multi-model database for data integra‐
tion. What can you expect? How should it live in your infrastruc‐
ture? Well, let’s take a look.

Your data has already been modeled. Very smart people in your
organization modeled it to meet the requirements of various appli‐
cations and business users. The data is just in silos. To integrate that
data, you don’t want to remodel all the data to fit some new model.
You want to take advantage of what you’ve already modeled as is and
integrate it quickly to deliver results in a unified view.

Source systems for your integration might not go away. The data
integration project is not necessarily a rip-and-replace solution.
Some systems exist for very good reasons and will continue to exist;
we just can’t use their presently contained data in isolation to ach‐
ieve meaningful business results. So, if we need to integrate a silo’s
data, a multi-model database can provide us an operational data hub
and/or act as the glue for unifying various sources of data into a uni‐
fied and consolidated layer. Let’s see how this plays out by stepping
through some simple examples.
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Entities and Relationships
Suppose that we have silos of customers, transactions, and products
that we’d like to integrate into a unified view. Conceptually, the enti‐
ties we care about and their relationships might look like Figure 3-1.

Figure 3-1. Entities and relationships

A customer can have many transactions; this is a one-to-many rela‐
tionship. Transactions can contain many products; this is a many-
to-many relationship. But we know the devil is in the details. For
each system of tables that models these entities and their relation‐
ships, we’re going to have to deal with potentially very different
schemas. So starting with a set of tables from System A, we might
see a model similar to that shown in Figure 3-2.

Figure 3-2. Sample customer data from System A

Yes, this example is overly simplistic, but it still helps make our
point. Relational schemas are not self-documenting. In Figure 3-2,
we see a set of attributes, with cryptic naming conventions, and we
can make some assumptions: but when we look at a field such as
Addr, we’re not really sure what’s in this field. There are attributes for
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City, State, and Zip, so maybe Addr is the street address? And is
this the address for shipping or billing? Well, suppose that we want
to integrate this set of tables with a set of tables from a System B that
contains the same type of information, but in a model that is shaped
a little differently, as depicted in Figure 3-3.

Figure 3-3. Sample customer data from System B

In Figure 3-3, we see multiple addresses and phone numbers per
customer. Just like that, our integration task is quickly becoming
more complex. We also see that attributes with similar semantic
meaning have different labels. A customer ID in system A is ID,
whereas in System B, it’s labeled Customer_ID. System A contains a
Zip field; System B labels it Postal. We also see the introduction of
new attributes and data from System B such as Supplier_ID; what
does this map to?

If we were going to integrate this data using another relational sys‐
tem, we’d need to understand all these attribute names, their mean‐
ings, relationships, and mappings to other systems before we could
come up with a schema to superset our source schemas. The map‐
pings between systems are baked in to the application code, PL/SQL
procedures, and the subject matter experts’ heads. Aggregating that
information is very time-consuming, and designing the schema to
superset all schemas also requires a considerable amount of time
and effort. Although these examples are naive and simple, we know
that the number of systems we’ll need to integrate and their varying
models are going to present us with much more complexity, as is
demonstrated in Figure 3-4.

Entities and Relationships | 35



Figure 3-4. The reality of the challenge is greater than we anticipate

Figure 3-4 shows three sets of tables from three different systems.
However, it’s not uncommon for organizations to have a require‐
ment to integrate hundreds of different schemas from hundreds of
different systems!

This is the crux of the problem when integrating using a relational
approach: you can’t fit differently shaped things into the same data‐
base and query across them. You must work all of the data into a
unified shape. With this approach, schemas never become simpler;
they only grow more complex. In practice, to ease the burden and
time cost of data integration, you find that some data is left behind.
We might not include Supplier_ID and its associated data if we
don’t think we will need it at the time for the integration project in
front of us. Leaving data on the floor often comes back to haunt us,
though, requiring updates to our schema and to the ETL that will
feed our super schema. Though we might spend considerable time
and effort to create the superset schema, what we’ve unintentionally
created is just another data silo.

So how do we go about using our customers, transactions, and
products in a multi-model database?

Let’s begin with just customers. Figure 3-5 shows the shape of a cus‐
tomer from System A, and Figure 3-6 shows the shape of a customer
from System B.
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Figure 3-5. Customer from System A

Figure 3-6. Customer from System B

A multi-model database separates data ingest from data organiza‐
tion and therefore allows us to load information as is. This flexibility
is great for being able to load data quickly, but we don’t want to re-
create a relational problem in a NoSQL system, and we want to be
cautious to not create yet another data silo. To aid us here, a multi-
model database also allows us to model entities as documents.

The first thing we do when loading data into a multi-model database
is identify the entities. This sounds complicated, but it’s not. An
entity is any object in the system that we want to model and whose
information we want to store. Entities are usually recognizable con‐
cepts, such persons, places, things, or events, that have relevance to
our business and the data we’ve stored in a database. Entities to us
might look like customers, orders, products, invoices, invoice lines,
patients, locations, accounts, and so on. The entities are already
defined; they’re just normalized in third normal form (3NF) across
many tables in the source systems.

If our multi-model database acts as a document database, we can
easily store the entities as documents in our database. We denormal‐
ize the relational rows to create entity documents. We can think of
this as a no-op transform when migrating from relational. We’re
storing the same data and the same entities from the relational sys‐
tem in a multi-model system, just in a different shape. We can carry
out the denormalization to create the entities (documents) prior to
loading into our multi-model database or after loading.
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A multi-model database is schema-agnostic, meaning that a schema
does not need to be defined prior to loading the data. We can liter‐
ally load the data as is.

A multi-model database is also schema-aware, meaning that as soon
as the data is loaded, it is immediately available for us to query it,
use it, and continue to model it in place.

A multi-model database provides agility with regard to the options
we have for formats in which we can persist our data. A multi-model
database allows us to save our data as XML, JSON, text, or binary. If
we took these two denormalized customer records and loaded them
into a multi-model database as JSON, we’d expect them to look simi‐
lar to Figure 3-7.

Figure 3-7. Customers from System A and System B as documents

A multi-model database should index all structure and text upon
import of data. For text, we expect all XML element values or JSON
property values to be indexed. For structure, we expect all XML ele‐
ments and all JSON properties and any of their parent-child rela‐
tionships to be indexed. By indexing text and structure on ingest,
immediately upon inserting our documents into a database we can
perform a structured query such as:

Give me all documents where Fname equals "Paul"

or:

Give me the Customer document where Customer_ID equals 2001

You then would expect to get the appropriate document back for
each query.
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When we don’t know the structure of the document, full-text search
also becomes useful. With search, we also can ask:

Show me the documents that contain the phrase "San Francisco"

and we’d expect to see the record for Paul Jackson.

Thus, in a multi-model database, we load as is, for some definition
of as is, where we really want to think in terms of loading entities. In
multi-model, we model entities and their relationships. So far in this
example, we have two very different shaped customer entities, and
because of index of text and structure, we can search and query
these records. But what if we want to ask the following question:

What are all the entities (documents) having a Zip equal 
to 94111

Well, we’d get only Paul’s record. Karen actually has an address at the
same zip code, but her attribute is defined as “Postal.” We could
search on 94111 and potentially get both records back, along with
any other document that might have 94111 in it. (What if there is a
product in our database with that same sequence of numbers for its
product code?) We’ll want to do something to map these properties
into some alignment. In a multi-model system, this is easy to do.

The Envelope Pattern
In multi-model databases, a simple yet powerful pattern has
emerged that MarkLogic calls the envelope pattern.

Here’s how it works: take your source entity, and make it the subdo‐
cument of a parent document. This parent document is the “enve‐
lope” for your source data. As a sibling to your source data within
the envelope, you add a header section where you start to add your
standardized attribute names, attribute values, and attribute struc‐
ture. In our example, we’ve standardized the “Zip” and “Postal”
attributes as “Zip” properties in both envelopes (see Figure 3-8). As
a result, we can now issue a structured query of the type “Show me
all customers having a zip code equal to 94111” and get both entities
back.
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Figure 3-8. The envelope pattern in action

The benefits to this approach are numerous:

• We retain our source entity as is. This is a big benefit for highly
regulated environments that come in and request to see the
entities as they were originally imported into our database.

• We standardize only what we need, when we need it. We don’t
require all the mappings up front. Now we iteratively manage
our data in place.

• We can continue to update our model later without reingesting.
• We can divide and conquer the standardization process across

development.

MarkLogic refers to this process of standardizing only the attributes
we need, as we need them, as harmonization. In this light, harmo‐
nizing entities includes wrapping entities in envelopes and placing
their standardized field names and values in the envelope, as a sib‐
ling to the source data.

Enterprise-wide data models as a notion failed to take hold in the
1990s due to the complexity of dealing with tools that only allow
you to work schema-first. The task at hand to identify all the
attributes from all the source systems and develop an integration
schema to contain everything identified repeatedly proved itself an
insurmountable task. But, by working through this process of har‐
monization in a multi-model system that allows us to add our own
schema later, as a sidecar to the source data in its original format, we
can begin to iterate to an enterprise-wide model bottom up. You’ll
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frequently hear this general, standardized enterprise-wide model
referred to as the canonical model.

Keep in mind that although we can load data without defining a
schema first, schemas are still important. We’re going to integrate
data and then deliver results to consumers that adhere to schemas.
Validation against business rules is still important and useful, but
not necessarily required for getting started with our data. We can
load and use our information as is. We can envelope our data and
harmonize it to get entities in some alignment for digestion by con‐
sumers. We can perform harmonization in place, after we’ve loaded
the data. Likewise, we can choose to validate and enforce schemas
after we’ve loaded the data. If we’re using XML, MarkLogic supports
validating documents by .xsd. In a multi-model database, we often
do schema validation when delivering results requested by con‐
sumer systems, but not necessarily before.

The multi-model approach to data integration
Silos of data often have silos of people working above them. To inte‐
grate silos in the relational approach, you need to get all the devel‐
opers, analysts, and business stakeholders from all the silos in the
room and get them to agree on the uber-schema before you begin to
load it. In a multi-model database, different groups can standardize
properties for their particular division, and both “canonical” models
can be present in the envelope simultaneously. Different groups
query the part of the document they require to feed their apps: but
by meeting regularly, these groups can make comparisons and
merge similarities so that over time they can iterate to a single can‐
onical model for the enterprise derived from across all entities in the
database. This iterative, divide-and-conquer approach has demon‐
strated time and again to complete integrations in weeks instead of
months, and months instead of years.

Let’s contrast how we work with data in multi-model for data inte‐
gration (Figure 3-9) with how we work with it using the relational
tools in Chapter 1. (Refer to Figure 1-2 to see the relational
approach.)
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Figure 3-9. Integrating data by using a multi-model approach

Here are some of the benefits of the multi-model approach:

• Eliminates upfront modeling requirement.
• Eliminates data migrations and store mappings and dependen‐

cies with the data.
• Querying and data access available during all steps of the pro‐

cess through a variety of APIs: Java, JavaScript, REST, SQL,
SPARQL, and XQuery.

• Consumer projects using existing harmonizations are not affec‐
ted by changes.

• Multiple versions of data can exist within the database at the
same time. An envelope can persist multiple headers, allowing
teams to work in parallel.

When we load as is, we’ve eliminated the time for upfront modeling.
We eliminate the “T” from ETL, lowering the time and cost for get‐
ting data into the system. As data is indexed on insert, we now can
begin to assess and standardize/harmonize the data in place. We can
load data and begin to harmonize simultaneously. This is a direct
result of separating data organization from data ingest in multi-
model. We don’t need to load all the sources; we can begin with just
one or as many as we like. And because a multi-model database
allows us to store all of the metadata and mappings and different
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versions and shapes and schemas of the data all together, we elimi‐
nate data migration. Now we’re working with agility in a cycle of
loading and harmonizing, iterating to deployment. Deployment
doesn’t require that everything be mapped or completed before
something useful is deployed, either. And for consuming applica‐
tions that use existing harmonizations, they don’t need to change
until they want or need to. We can achieve data integration victory
much quicker and with less risk by using a multi-model database.

In fact, complex data integrations done using a multi-model data‐
base, such as MarkLogic, are four times faster than when done using
a relational approach. Completion of these projects includes not
only integrating the data from source systems but also delivering
results in multiple formats to multiple consumers.

Adding more information to envelopes
The envelope pattern is incredibly useful in that it allows us to also
store metadata, such as provenance, lineage, and any other mean‐
ingful information that we’d like, in the envelope (see Figure 3-10).
With a true multi-model database, we can reshape the data and add
an envelope with additional data and have that additional structure
and data immediately available for search and query. This is the ben‐
efit of a multi-model database being schema-agnostic and schema-
aware.

Figure 3-10. Adding more information to the envelope

Here are some additional benefits:
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• Preserve and query lineage, provenance, and other metadata.
• New schemas don’t impact existing schemas or applications.

Adding a completely differently shaped entity to our database—per‐
haps a social media feed—would have no impact to our standar‐
dized, enveloped entities at all. It becomes another entity we can
search and query as is, or another candidate for us to envelope and
standardize with our existing entities.

As stated previously, in a multi-model database, we think of entities
as documents. Where do entities come from? They come from the
entities we’ve already modeled and saved in our existing source sys‐
tems. Previously, they lived in rows across several tables. We
denormalize to create the entities by topics of interest for our data
integration applications. If we care about customers, we create cus‐
tomer entities. If we want to know about orders for these customers,
we create order entities, and so on. We store the entities as docu‐
ments.

But in multi-model, and in data integration, we want to begin by
keeping the data as close to its original source form as possible. By
doing this, we always have a snapshot, which we could normalize if
we so wish, of what the data looked like when it was received. We
wrap our entity in an envelope document and add any standardiza‐
tion of element/property names, element/property values, element/
property structure, metadata, lineage, provenance, and anything else
we might want to capture along in the envelope sibling to the
source.

A closer look at modeling relationships
Now, let’s take it another step: what about relationships among our
entities?

If we look at a given set of tables for our customers, transactions,
and products, we see a slew of relationships occurring, as depicted
in Figure 3-11.
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Figure 3-11. Only business entity concept relationships are meaningful;
others are spurious

But many of these relationships are misleading. If we strip away the
relationships maintained as an artifact of modeling data in 3NF and
just leave the relationships that represent actual business context,
the relationships we care most about are actually fewer, as highligh‐
ted in Figure 3-12.

Figure 3-12. Capture the correct relationships

Ironically, relational databases are bad at modeling relationships.
The meanings of these relationships aren’t in our data or in the
schema, they are often found in application code. In this data, a cus‐
tomer placed an order for some product. We don’t necessarily know
if the customer has actually purchased the items in the order; we
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just know there is relationship between the customer and the order.
We have no idea what the meaning of the relationship is unless we’re
provided further information.

Let’s look again at our entities now modeled as documents. In a
multi-model database, our conceptual and physical models are
much more closely aligned, as demonstrated in Figure 3-13.

Figure 3-13. Another way to look at entities are relationships; docu‐
ments are entities

And when we look closely at the entities, we can still see the avail‐
able joins. In the example JSON documents (Figure 3-14), we can
rely on similar property names and values, either in our harmonized
headers or our enveloped source documents, to perform joins for us.

Figure 3-14. Foreign key joins still possible, but in multi-model there’s
a better way

46 | Chapter 3: A Multi-Model Database for Data Integration



But with a multi-model database, we can do so much better. We can
provide rich meaning and utility to these relationships using seman‐
tics.

Semantics
Semantic technologies refer to a family of specific W3C standards
that facilitate the exchange of information about relationships in
data, in machine-readable form. A triple statement contains a sub‐
ject, predicate, and an object, as shown in Figure 3-15.

Figure 3-15. The definition of “a triple” in semantics

If this is completely new to you, the simplest way to think about
these three pieces of data is as two things and the relationship
between them. In terms of a graph, we can think of them as a node
(subject), an edge (predicate), and a node (object). The object of one
triple can be the subject for another. Triples provide an elegant way
to model joins that represent business concepts, as demonstrated in
Figure 3-16.

Figure 3-16. Relationships are triples

By representing data and their relationships in this way, you can
assemble the triples into a graph and query it by using SPARQL (a
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recursive acronym naming convention which stand for SPARQL
Protocol and RDF Query Language), which you can see in
Figure 3-17.

Figure 3-17. A SPARQL query (in the upper-left corner)

Something else triple stores allow you to do is to create rules and
perform inference on these relationships. By doing this, we can
assign rich meaning to the relationships within the graph. (See
Figure 3-18). We can create new relationships and extract new facts
by inferring meaning from existing relationships. Thus, if a person
places an order, and an order contains a given product, we might
know that the customer bought the product. We can create a rule to
tell us that. We can then use this new fact about our data in subse‐
quent queries.

Figure 3-18. The edges of this graph show that a customer has bought a
specific product
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And it gets even richer. We can use triples to relate entities with
other entities, but we can also use them to relate entities with con‐
cepts, and concepts with other concepts. We can use machine code
or text annotations to enrich our graphs to create these relation‐
ships. This makes it possible for us to do things like find and group
“like” customers or suggest “like” or “complementary” products to
customers. (See Figure 3-19.)

Figure 3-19. Using machine code and text annotations to enrich rela‐
tionships with triples

And in a multi-model database, we can store these triples outside of
our entities, within their own documents, or by using the envelope
pattern, to store them with our entities as well. (See Figure 3-20.)

Figure 3-20. We can store triples in envelopes
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True multi-model systems allow us to query triples via SPARQL,
search and query entire documents using APIs (JavaScript here for
JSON), and even combine queries together!

How this is entirely modeled is beyond the scope of this book. But
likely you’ll have some set of triples stored within your enveloped
entities, and another set of triples external to the entities. A multi-
model database allows you to store the different data models
together in their native formats and compose a query across them
through a single API.

In our previous examples, we illustrated storing our data as entities
(documents) derived from relational data, but the same rules can
apply for other data sources. If we’re importing mainframe copy‐
book or .vsam files, as well as .csv, Excel documents, text files, and
JSON and XML feeds, we load the information as is. It’s not so much
about the existing physical layout of the record, because that will
change over time anyway, but we want to avoid remodeling any of
our data as a condition of loading. We want to begin with our data
in a shape as close to the existing data model from the source system
as possible. We can summarize the process as follows:

1. We identify the entities in our source data, create the entities,
and wrap the source entities in envelope documents, standardiz‐
ing only the fields we require for structured queries within the
envelope as we need them.

2. We use triples to define relationships among our entities.
3. We can use the name of the document we create for an entity as

a key; the document itself is a value container.

In a multi-model database, we can store our entities and relation‐
ships as either XML or JSON, so for binaries, such as mainframe
files or Microsoft Office documents, we’ll want to convert the binary
to XML or JSON so that we have something available for search and
query. Open source libraries are available for this, and a multi-
model database might come with built-in utilities to provide this
capability as well. But what about other document types? We take a
closer look at those in Chapter 4.
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CHAPTER 4

Documents and Text

Up until this point, we’ve looked at multi-model through the lens of
data integration with a focus on integrating data from relational sys‐
tems. This is frequently where data integration begins, but there is
tremendous value in being able to search structured data with
unstructured and semi-structured data such as documents and text.
Unfortunately, most people who hear documents and text in relation
to a database automatically think of Binary Large OBjects (BLOBs)
or Character Large OBjects (CLOBs) or the amount of shredding
required to get those documents and text to fit a relational schema.
But a multi-model database allows us to load them and use them as
is because their text and structure are self-describing.

When we asked more than 200 IT professionals what percentage of
their data was not relational, 44% said 1 to 25% of their data was
unstructured. That is a shockingly low volume of unstructured data
—for a surprisingly high number of organizations. Although it is
possible that these organizations really do have a paucity of data that
isn’t relational, it is more likely that most companies aren’t dealing
with their unstructured data because it is simply too inconvenient to
do so.

The ubiquity of relational databases has meant that, for many, only
that which fits in a relational database management systems
(RDBMS)—billing, payroll, customer, and inventory—is considered
data. But this view of data is changing. Analysts estimate that more
than 80% of data being created and stored is unstructured. This
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includes documentation, instant messages, email, customer commu‐
nications, contracts, product information, and website tracking data.

So why does the survey indicate that at most 25% of an organiza‐
tion’s data is unstructured? Possibly because data that is unstruc‐
tured (or even semi-structured) is rarely dealt with by IT
management.

That doesn’t make unstructured data low-value. In fact, the inverse
is true. Instead, it means this highly valuable content is unused.

But there are options for modeling, storing, and querying unstruc‐
tured data that give us insight into the 80% of the data that, for
many, has remained unexplored. Further, any multi-model database
that includes a structured model, such as JSON or XML, with text
indexing provides the ability to query structured and unstructured
data together.

Schemas Are Key to Querying Documents
XML and JSON documents are self-describing. The schema is
already defined within the elements and properties already written
within each document. Multi-model systems can identify this
implicit schema when data is imported into the database and allow
you to immediately query it.

Schemas create a consistent way to describe and query your data. As
we noted earlier, in a relational database, the schema is defined in
terms of tables, columns, and attributes; each table has one or more
columns, and each column has one or more attributes. Different
rows in a relational database table have the same schema—period.
This makes the schema static, with only slow, painful, and costly
changes possible. Relational systems are schema-first, in that we
have to define the schema before pouring in the data. Changing the
shape of the schema after data has been poured in can be painfully
challenging and costly.

In a nonrelational database, the idea of a schema is more fluid. Some
NoSQL databases have a concept of a schema that is similar to the
relational picture, but most do not. Of those that do not, you can
further divide them into databases for which the schema is latent,
that is implicit, in the structure of each semi-structured or unstruc‐
tured entity. When working with data from existing sources, your
data has already been modeled. Data usually comes to us with some
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shape to it. When we load XML or JSON documents into a multi-
model database, the latent or implicit schema is already defined
within the XML elements or JSON properties of the documents, as
demonstrated in Figure 4-1.

Figure 4-1. Same document saved in two different formats

If the primary data entity is a document, frequently represented as
an XML or JSON object, the latent schema implicit in a document
might be different than that of another document in the same
NoSQL database or database collection. That is to say, one document
might have a title and author, whereas another has a headline and
writer. Each of those two documents can be in the same NoSQL
database because the schema is included in the documents them‐
selves. In other words, in document stores, the schema is organized
in each document, but it’s not defined externally as it would be in a
relational database. The latent schema is the shape of the data when
you loaded it. In NoSQL databases, the schema for any document
could, and often does, change frequently.

A true multi-model database is schema-agnostic and schema-aware
so that you are not forced to cast your queries in a predefined and
unchanging schema.

This is perfect for managing and querying text, and for querying
text with structured data. This gives you a semantic view of varied
databases and one place where you can look up every fact that you
have. In that case, a multi-model database handles (at least) a docu‐
ment data model as well as semantic RDF data.

In the preceding documents, a multi-model database will index the
JSON properties and XML elements as well as their values. In this
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way, the system is schema-aware, in that element and property val‐
ues can be used for structured queries such as this one:

Show me the documents where heading equals "Data Models"

We also can use them as full-text search queries such as the follow‐
ing:

Show me any documents with the word "relational" in them 
anywhere in the document.

Combining full-text search and structured query, we should be able
to perform a search query of the following type:

Search for documents with the word "relational" anywhere in a 
paragraph element/property.

A multi-model database management system must let you load data
with multiple schemas. You shouldn’t need to be concerned about
lengths nor worry about cardinality of elements/properties. And, if
something unexpected shows up tomorrow, you can still store it just
fine.

Document-Store Approach to Search
In a document-store, documents are akin to rows, although a con‐
tract will make a lot more sense stored as a document versus stored
as a row. Now, without knowing anything else about the document,
you would be able to do a Boolean and full-text search against it.
This approach sounds familiar if you have used Apache Lucene or
Apache SOLR.

Flexible Indexing
The beauty of indexing in a document store is that it also provides
for structured search, indexing the inherent structure of the docu‐
ment in addition to the text and values within the document. That is
to say, documents have plenty of structure, including titles, section
headings, book chapters, headers, footers, contract IDs, line items,
addresses, and subheadings, and we can describe that structure by
using JSON properties or XML elements. A multi-model database
creates a generalized index of the JSON and XML values for that
structure and indexes every value and every parent-child relation‐
ship that has been defined. In other words, the document model
operating in a multi-model database, where anything can be added
to any record (and is immediately queryable in a structured way) is
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far more powerful and flexible than the related-table model of a
relational database for storing rich representations of entities. It also
allows us to store, manage, and query relationships between those
entities.

With a multi-model database, we can also extend the generalized
document text and structure index with special purpose indexes such
as range, geospatial, bitemporal, and triples.

Mapping (Mainframe) Data into Documents
Let’s take a moment to look at documents that might come to us
from mainframe systems. COBOL copybooks and Virtual Storage
Access Method (VSAM) can actually be a very good fit for the docu‐
ment model.

COBOL is an acronym for the Common Business-Oriented Lan‐
guage. It’s an older computer language designed for business use and
found in many legacy mainframe applications. Data in these systems
is found in copybook format, which is used to define data elements
that can be referenced by COBOL programs. Due to the declining
popularity of mainframes and the retirement of experienced
COBOL programmers, COBOL-based programs are being migrated
to new platforms, rewritten in modern languages, or replaced with
software packages; and their associated data is being moved to more
modern repositories such as NoSQL and multi-model databases.

Copybooks capture data resembling objects, or entities, and as a
result are often a more natural fit for a document store than rela‐
tional. You can transform a copybook object into an XML or JSON
document in a pretty straightforward manner, as illustrated in
Figure 4-2. There are open source libraries available on the web to
help do this.
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Figure 4-2. COBOL copybook as XML

Additionally, the REDEFINES clause in COBOL creates a data poly‐
morphism, something else that isn’t simple or easy to capture in a
relational system. Using entities and relationships in a multi-model
system, however, this becomes a much more straightforward trans‐
formation, as shown in Figure 4-3.

Figure 4-3. COBOL REDFINES clause simpler to manage as XML

Along with COBOL, we might find VSAM files along our main‐
frame data integration path. These are generally exported from their
source mainframe as fixed-width text files. You’ll receive the data in
one set of files, and then a specification file that lets you know the
offsets for the data for each row in a data file (characters 1–10 are
the customer_id, 11–21 are first_name, 22–34 are last_name, etc.).
These are generally parsed using Java and saved in XML or JSON
within a multi-model or document database.

We mention this here because, again, in using multi-model for data
integration, we’ll be concerned with capturing entities and relation‐
ships. These are often already defined within their source systems,
and those source systems might be mainframes from which we
import COBOL copybooks and VSAM files. On their own, these
formats are binary, so processing into a document format for search

56 | Chapter 4: Documents and Text



and reuse will be required. But after you’ve done that, they will be
immediately available for search and reuse along with all your other
data in a multi-model database. And this is what we see organiza‐
tions are doing today. Many large organizations modernizing their
architectures to replace and remove legacy mainframes are bypass‐
ing relational databases and jumping straight to NoSQL and multi-
model ones.

Indexing Relationships
As previously mentioned, a multi-model database can use triples to
represent relationships between entities. As a reminder, a triple is
called a triple because it consists of three things: a subject, a predi‐
cate, and an object. In other words, it models two “things” and the
relationship between them. This creates very granular facts.

Unlike primary/foreign key relationships in a relational database,
these facts have meaning because we can infer new data based on the
semantic meaning inherent in the facts we already had. In other
words, triples don’t just need to relate entities to other entities; they
can relate entities to concepts, and even concepts to other concepts.

We can even store a data dictionary or ontology right in the data‐
base along with the data, so the meaning of the relationships can be
preserved in both human- and machine-readable form.

To scale, a multi-model database should automatically index rela‐
tionships between entities so that they can be joined, queried, com‐
bined with other triples, and used to build inferences.

If all indexes know the same document ID, we can compose queries
against this single integrated index.

The net result is multiple data models, but one integrated index.
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Take care when dealing with vendors who have imple‐
mented their multi-model solutions by stitching
together multiple disparate products (a multiproduct,
multi-model database). Each product has its own quer‐
ies and indexes, and there exists the potential for
inconsistencies between data. Each purpose-built data
store requires an API into each repository. On the
development side, the burden is on the coder to write
code that queries each data store, and then splices and
joins the two separate results together in an application
tier. More lines of code equal more points of failure in
an application and more risk. Further, this type of
query can never be performant; it’s a join that can be
performed only one way.

Scaling multiproduct, multi-model systems will also introduce more
complexity, which can be difficult to overcome. Different systems
require different indexes and have different scalability requirements.
If developers write code to bring together a document store with a
search engine and a triple store and call this multi-model, a lot of
orchestration and infrastructure work must be implemented at the
beginning of the project, and the system will only ever be as fast as
the slowest application. All that orchestration code will also now
require continued maintenance by your development staff.

A multi-model product that’s delivered as a single application to
include support for documents, graphs, and search will scale more
effectively and perform better than a multiproduct, multi-model
approach every time. Because the focus on plumbing disparate com‐
ponents isn’t required, with a true multi-model system, developers
can load data as is and begin building applications to deliver data
immediately without having to handle the upfront cost of plumbing
disparate systems together for the same purposes. We’ll examine this
further in upcoming chapters.

By looking at the schema-agnostic, schema-aware, and flexible
indexing characteristics of a multi-model database, we’ve addressed
the agility a multi-model database provides us in managing our con‐
ceptual and physical data models in the system as well as managing
those documents as JSON, XML, binary, or text. We now need to
take a closer look at how we access and interact with this data.
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1 Martin Fowler, “PolyglotPersistence”, MartinFowler.com, November 16, 2011.

CHAPTER 5

Agility in Models Requires
Agility in Access

In 2011, Martin Fowler wrote about what he called polyglot persis‐
tence, “where any decent sized enterprise will have a variety of dif‐
ferent data storage technologies for different kinds of data.”1 Even
single systems, he envisioned, might use multiple backend data
stores to take advantage of multiple NoSQL (and SQL) technologies:

This polyglot effect will be apparent even within a single applica‐
tion. A complex enterprise application uses different kinds of data,
and already usually integrates information from different sources.
Increasingly we’ll see such applications manage their own data
using different technologies depending on how the data is used.

The conventional understanding is that to achieve polyglot persis‐
tence, you store each discrete data type in its own discrete technol‐
ogy. But the definition of polyglot is “the ability to speak many
languages,” not “the ability to integrate many components.” This is
where enterprises get into trouble. They tend to want to take the
conventional route of using multiple stores for multiple data types.

On the surface, it might appear to make sense to store each data
model in its own distinct management system, but integrating this
data with data from other systems increases the complexity of man‐
aging any unified view of the data exponentially. Fowler correctly
noted that each system will have its own interface, requiring new
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skills to be learned, and that different systems will have different
scalability requirements:

This will come at a cost in complexity. Each data storage mecha‐
nism introduces a new interface to be learned. Furthermore, data
storage is usually a performance bottleneck, so you have to under‐
stand a lot about how the technology works to get decent speed.
Using the right persistence technology will make this easier, but the
challenge won’t go away.

A considerable amount of coding would be required to implement
and enable a clean, unified interface for data storage, retrieval,
query, and search across multiple systems. The assumption made
here is that orchestration would occur via web services and the
application tier.

Polyglot persistence represents a desirable goal, not a problem. But
by storing disparate sets of data in their own unique silos, whenever
we want to combine and integrate those datasets into a unified view,
we find we’ve actually helped proliferate the problem of silos,
extract, transform, and load (ETL), data movement and transforma‐
tion. We’ve also increased our requirements for system-to-system
connectivity and custom pipelines for orchestration.

But in a multi-model database, as we stated, we can store data in dif‐
ferent formats and different models and query across them compos‐
ably. If the database stores XML, XPath, XQuery, and XSLT should
be available for search and query and create, read, update, and delete
(CRUD) operations, as those are the native languages for XML. If
the database stores JSON, JavaScript should be available for infor‐
mation management, as well, because it is the natural language for
JSON. If the database allows us to store Resource Description
Framework (RDF) triples, a SPARQL interface should be present. If
the multi-model database allows you to create relational projections
or views of data, SQL should be available as a query language. Agil‐
ity in models requires agility in the data access.

Depending on our use case, we’ll want to use the appropriate lan‐
guage for the appropriate formats. Additionally, a REST interface
should be available, because most modern development systems
interface with data stores through web services. An out-of-the-box
and extensible REST interface can abstract the underlying lower-
level languages while providing the same functionality. Client APIs
in common languages such as Java and .NET can also provide the
same functionality. All these interfaces should be composable. Using
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one interface should not disallow the use of another. And this is how
it is in a multi-model database—a unified repository for multiple
data models persisted in multiple data formats accessible through a
variety of language interfaces to a single system using a single API!

Composable Design
The Unix philosophy emphasizes building simple, short, clear, mod‐
ular, and extensible code that can be easily maintained and repur‐
posed by developers other than its original creators. The Unix
philosophy favors composable as opposed to monolithic design. In a
nutshell, a function in Unix tends to do one thing, do it very well,
and you can use and combine functions together with other func‐
tions to create new outputs. In a multi-model system, we favor com‐
posable over monolithic design, as well. Indexes and APIs and
functions aim to do one thing very well. We should be able to use
and combine them in new ways to create the desired inputs and out‐
puts for our applications.

Be mindful of multiproduct, multi-model databases or
systems claiming to be multi-model but are limited or
not entirely multi-model. You’ll be able to determine
this because combining APIs and indexes might not
work for all combinations, and certain combinations
might even mean we lose other advertised capabilities
of the system (or systems) as a result!

Schema-on-Write Versus Schema-on-Read
For decades now, the database world has been oriented toward the
schema-on-write approach. First you define your schema, then you
write your data, then you read your data, and it comes back in the
schema you defined at the outset. This approach is so deeply
ingrained in our thinking that many people would ask, “how else
would you do it?” The answer is schema-on-read.

Schema-on-read follows a different sequence: just load the data as is
and apply your own lens to the data when you read it back out. So
instead of requiring a schema first, before doing anything with your
data, a multi-model systems can use the latent schema already with
the data and update this existing schema later as desired or needed.
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In a multi-model database, we’re going to model entities and rela‐
tionships. The data will be stored as documents and triples. We saw
how we wrap the entity in an envelope to add standardization of
attribute names, values, and structure, as well as information related
to metadata, lineage, and provenance. The shape of the data we per‐
sist is the schema we write. It is the schema persisted within the sys‐
tem; and in multi-model, multiple schemas can exist at once, and we
can query across them all.

In the relational world, when it comes to data integration, we know
we must define a schema, before we do anything else, that addresses
the concerns of all stakeholders and constituencies in advance, and
then we can load the data to fit that schema. Retrieving data from a
relational system and reconstituting it and repurposing it essentially
becomes a mapping exercise followed by some transformation, and
all performed at the application tier.

But now that we have our multi-model schema, and even before
we’ve identified entities and relationships, we can begin to query
that data and provide different lenses on the same set of data. With
schema-on-read, we’re not tied to a predetermined structure, so we
can present the data back in a schema that is most relevant to the
task at hand. This is simple to do in multi-model because we have
the appropriate language interfaces at the database layer to trans‐
form the data as we request it. It’s not uncommon to keep one shape
of the envelope data in multi-model but provide different lenses on
that data for multiple consumers through languages such as Java‐
Script, XSLT, or SPARQL, as depicted in Figure 5-1.

Figure 5-1. Load as is, harmonize, and deliver multiple lenses for mul‐
tiple consumers on a single persisted model
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We also can use SQL in a schema-on-read fashion. In multi-model,
we have entities and relationships, just as we had in our source rela‐
tional systems. If we want to create a similar relational view of that
data, we can. We accomplish this through indexing in the database
to materialize or project views. If we can create a tabular, relational
view of data, we should be able to query the data in the standard
natural for its format. SQL is that standard language. In today’s
multi-model database, SQL queries are read-only, in that they read
from views of data materialized in indices. In a multi-model data‐
base, SQL becomes another lens through which to view the same
data.

And this is another benefit of multi-model. Being able to provide
different lenses for different consumers of data from a single source
allows us to deliver data consistently, reducing data movement and
copies because we don’t need to copy data to a standalone silo for a
specific application to ensure data access and delivery. We don’t
need to save the data in a format specific to a business unit or any
particular use case. Applications become consumers from a unified,
centralized repository. In this way, multi-model databases are great
for creating integrated “data hubs” that span many data sources in a
single repository.

But there is more to reducing data movement and copies than sim‐
ply not copying it. Putting it all in one place will not help if the data
is not indexed, accessible, and able to be processed. Table 5-1 lists
the core technologies needed for each data type to be considered
truly “supported” rather than simply copied and stored.

Table 5-1. Multi-model data format and API checklist

Format Programming languages and standards
JSON JavaScript
RDF SPARQL
Relational SQL
Text No real standard. Look for integrated search.
XML XPath, XSLT, XQuery, XSD Validation

For example, putting JSON data into a Binary Large OBject (BLOB)
in a relational database does not make it accessible in any real sense.
Adding three different data types to a Hadoop-based data lake (see
“Data Lake” on page 87) does not enable that data to be indexed,
transformed, and exposed by different lenses, or easily processed.
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This is why we emphasize the benefit of multi-model databases,
rather than simply heterogeneous storage.

In addition to adhering to standards-based languages, you also
should look for standards-based interfaces, such as JavaScript, Java,
and REST APIs (see Table 5-1).

In our multi-model database discussion thus far, we have discussed
agility in data models and agility in access and delivery through
APIs, interfaces, and indexes. We see the opportunities for new ways
of working with data and how we can take advantage of multi-
model databases to begin addressing data integration problems. If
we’re going to integrate a considerable amount of data, we now need
to examine scalability requirements for multi-model. Additionally, if
we’re going to run our business on a multi-model database, ACID
transactions, security, and other enterprise features we require are of
paramount importance to us, too. In Chapter 6, we continue our
multi-model journey by taking a closer look at how we scale multi-
model.

64 | Chapter 5: Agility in Models Requires Agility in Access



CHAPTER 6

Scalability and Enterprise
Considerations

Scalability
There are two basic approaches to scaling a database to large data‐
sets. One is to “scale up” by increasing the power of the server on
which the database runs, and the other is to “scale out” by adding
additional servers that somehow work together to increase overall
capacity.

NoSQL databases scale horizontally—or scale out—and multi-
model should preserve this capability. A scale-out database is parti‐
tioned across multiple nodes, typically running on commodity
hardware. It’s a divide-and-conquer-approach to data management.
Data is distributed across many nodes, but queried as one unit,
using one set of indexes, one integrated query, and one query opti‐
mizer.

Think of it this way: a standard deck of cards has 52 cards in it. If I
hand that deck to my friend Joey Scaleup and ask him to find me the
two of hearts, in the worst-case scenario, Joey must flip through all
52 cards before finding the card I asked for. But if I take that same
deck and hand a quarter of it each to my friends Chris, Mary,
Wayne, and Colleen, in the worst case, one of them has to rifle
through only 13 cards before finding the same card. I get the result
in a quarter of the time. The benefit of distributing that deck is simi‐
lar to how scale-out systems work. Each person holding a quarter of
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the deck has no idea what cards the other person is holding (shared-
nothing architecture). A coordinator broadcasts the request, and
each person executes the task for the cards they hold. If I want to get
the result quicker, I can scale out by dividing the deck evenly among
more friends. If I scale up, my only option is to find a person who
can rifle through cards faster than Joey.

Relational systems traditionally scale vertically, or scale up. This
approach requires adding more resources to a single system. Adding
CPU, memory, and storage to a single system can quickly become
cost prohibitive. In relational, we now also see engineered systems,
in which proprietary software operates on proprietary hardware to
help overcome the performance issues that occur when you can’t
split the resolution to a problem into smaller tasks.

Both approaches have pros and cons, but if we’re going beyond rela‐
tional, a multi-model system will need to scale out.

These NoSQL technologies all provide some way to partition your
data such that the data will be distributed across a cluster of com‐
modity servers. This is usually decided based on attributes within
the data. Partitioning therefore requires some upfront understand‐
ing about your data and what kinds of questions you’ll be asking,
such that all of the results aren’t clumped together within the cluster
(which would create performance hotspots) and are instead dis‐
tributed evenly across all nodes. In our card example, if we don’t dis‐
tribute the cards evenly, Chris could end up with all the cards and
doing all the work for us, while our other three friends sit idle. Chris
becomes fatigued from doing all the work, and we’re not seeing the
benefits of dividing and conquering our data. Similar rules apply for
distributing data among multiple nodes.

So, with relational and some NoSQL systems, we decide how to par‐
tition data across nodes based on some attributes within the data,
and these attributes are decided upon by what questions we think
we’ll want to ask of the data and how we think we’ll want to index it.
This is done to ensure data is distributed equally across partitions
and to take advantage of the limited indexes provided by the under‐
lying database system. However, if the questions we want to ask
change, repartitioning might be required to maintain performance
and to change or update our indexes. At scale, repartitioning can
come at great cost with respect to time, effort, and even interruption
of service. Because of this, extensive data modeling prior to loading
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any data can be required for NoSQL systems, too. It’s also possible to
just get the design wrong and have to rebuild your database when‐
ever new data or queries are introduced. These are all common
problems when you need to deal with schema-first in data integra‐
tion.

Data Distribution in Multi-Model
Multi-model databases separate data ingestion from data organiza‐
tion. Being schema-agnostic, there is no upfront schema require‐
ment to make a start with our data. No schema needs to be defined
prior to loading the data, and no particular key or attribute is
required to determine how data is partitioned across a cluster. Data
can be loaded as is and will be distributed evenly across all partitions
by default, and all search and query features and capabilities will
continue to work together composably and at scale. As data volumes
grow, we can add new partitions to the existing database, and data
can be rebalanced automatically to maintain database performance
(see Figure 6-1).

Figure 6-1. Scale out cluster architecture
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An issue with some NoSQL systems is that when you
scale out, certain indexes and features of the database,
such as APIs, queries, and indexes, will no longer con‐
tinue to work composably or might fail to work at all.
This just isn’t acceptable for any database. Luckily this
isn’t the case with multi-model systems.

Scaling Performance
Conceptually, a multi-model database has two major areas of con‐
cern: managing physical storage of the data and managing the quer‐
ies. In a clustered system for which managing the queries is more
complex and needs to be spread out among many computers, a layer
needs to operate as the brain for the system that will broadcast quer‐
ies and aggregate results. At MarkLogic, we call this broadcaster/
aggregator the evaluation layer. Recall that a multi-model database
uses a shared-nothing architecture, which is a distributed comput‐
ing architecture in which each node is independent and self-
sufficient, and there is no single point of contention across the
system. More specifically, none of the nodes share memory or
storage.

In a multi-model database, the query processor determines which
queries you can run and what languages you can use (query mod‐
els). The storage manager/data layer dictates how the data types are
stored as well as indexed and is responsible for using those indexes
to resolve queries that reference them. Again, in a distributed sys‐
tem, the query processor needs to be able to talk to many machines.
The query processor can reside in both the evaluation and data lay‐
ers. Any one node in the system has no awareness of what the other
nodes are managing. In Figure 6-1, for the two data manager nodes,
the data manager node on the left only knows about its three parti‐
tions and the data it is managing. The left node has no idea how
many other nodes are in the system or how those are operating or
what data they are managing. This is what is meant by “shared-
nothing.” The advantages of this versus a central system that con‐
trols the cluster include eliminating any single point of failure,
allowing self-healing capabilities, and providing an advantage by
offering nondisruptive upgrades.

With today’s modern systems, each node in a cluster can operate as
both an evaluator and a data manager. Cluster topologies depend on
use case and environment. But if you separate the evaluation and
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data layers, this should be configurable within the multi-model sys‐
tem and not require separate software packages. The difference
really is in supporting hardware. Evaluators need less storage
because they aren’t managing data, but require more memory and
CPU because they are broadcasting queries and aggregating results.
Data managers required more storage to manage the data, but not
necessarily as much memory or CPU.

A certain number of nodes will be required in any multi-model
database to define “a cluster.” In MarkLogic, three nodes are
required. Then, you have the choice to scale out at the appropriate
tier based on use case demand. If you have more users, add more
nodes to your evaluation layer. If you have more data, which is often
the case, add more nodes to your data layer. When you add nodes to
the data layer, along with introducing its new available partitions to
the database, the multi-model systems should support some reba‐
lancing so that data distribution across all nodes remains uniform
and consistent.

Clustering provides four key advantages:

• Use of commodity servers, which can be acquired at reasonable
prices

• Incrementally add (or remove) new servers as needed (as data
or users grow)

• Maximize cache locality by having different servers optimized
for different roles and managing different parts of the data

• Failover capabilities to handle server failures.

If your multi-model database is a single software product, perfor‐
mance should scale near linearly. It’s simpler to do capacity planning
because all nodes will be operating by a uniform set of rules for a
single system. In this way, you can plan in a consistent manner for
upcoming storage, CPU, memory, and I/O requirements. However,
if your multi-model system is multiproduct and requires additional
components and plumbing to accommodate additional models such
as search or semantic triples, scaling becomes much more difficult.
Each system will have its own individual requirements for cluster‐
ing, storage, memory, and CPU. These will all need to be accounted
for, and scaling out will require more planning. It won’t be as simple
as just adding more nodes at the appropriate tier.
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Looking at Query Capabilities of Specific Technologies
In MarkLogic, the query layer superimposes a coherent, structured
tree model on top of the raw data while leaving the raw data intact.
With that tree model, you get two things: a rich and well-known set
of ideas and query languages that are precisely geared to talk to
XML and JSON data; for example, JavaScript, XPath, XQuery, XSLT,
and SPARQL. The act of wrapping it means that all of these well-
understood and well-supported, standardized ways to structure and
query data are now at your fingertips and can be applied to tame an
unruly mass of multi-model data. This gives you a principled, repro‐
ducible way to think about the data, index it, and query it by using
JSON, XML, and Resource Description Framework (RDF).

Some systems call themselves multi-model when they
are really multi-query. They are only storing one data
model, but will allow you to access that data model
through multiple query languages. To be multi-model,
you must be able to query multiple models by using
their native query language.

Managing the Physical Data
The storage manager/data layer dictates how the data types are
stored as well as indexed and is responsible for using those indexes
to resolve queries that reference them. It is important that the data-
layer abstraction allows you to manage the way data moves in the
system. In MarkLogic, the data layer is mostly centered on drive I/O,
caching, journals, locking, and transactions.

MarkLogic allows the splitting of these layers to scale out either the
application services or the data management.

Indexes and indexing are important parts of the data layer because
they contribute to the performance of a multi-model database. We
have already discussed how a shared-nothing architecture contrib‐
utes to performance. The optimal construction and management of
indexes completes the picture of how multi-model databases pro‐
vide excellent query performance across multiple models of data.
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Indexing
Let’s remember why we are collecting, storing, and managing data in
the first place. Ultimately, we are seeking knowledge or insight,
which we access through queries. Ideally, we would like it to be easy
to create those queries and for them to be answered quickly, but
speed (both latency and throughput, to be exact) depends on how
the data is organized. This is where indexes come in. In short: good
indexes, fast queries; poor indexes, slow queries.

There are two ways to find things in a library: you could look at
every book on every shelf, or you can go to a card index. Of course,
scanning every book on every shelf is not very practical, so why
would we want to do that in our database?

In any database system—SQL, NoSQL, NewSQL, multi-model—
data is indexed and organized.

In relational database management systems (RDBMS), the DBMS
needs to do a full scan of each record to perform a query unless a
usable index has been defined. Suppose that you have a database of
NASA scientists and astronauts, and you want to write the following
query: “I want to see all astronauts who went on Apollo missions.” If
you have 10,000 names in your database, it will need to do a full
table scan of those 10,000. You could then create an index that lets
you find a particular astronaut (and the row associated with the
astronaut, which presumably contains the name) very quickly.

And if you add an XML layer onto a RDBMS, you need a special
index that knows about structure (paths) as well as values. This is
problematic because your options limited to the following:

Define upfront which paths you want to index
This requires some knowledge of the data and the types of quer‐
ies you’ll be issuing against it. This strategy will only help per‐
formance for the paths defined and proves ultimately inflexible.

Index all possible paths
You do this blindly so that you can query any possible path in
the future. But this causes an explosion of the index, especially
for rich documents such as XML with inline markup, which
adds to the overall footprint of the system and can create other
performance issues.
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In relational and other databases, you index data to speed up quer‐
ies. Building indexes is difficult work. That’s true of commercial
databases, of open source databases like MariaDB and PostgreSQL,
and of most NoSQL solutions that do indexing. (The ones that don’t
do indexing solve a very different problem and probably shouldn’t
be confused with databases.)

A key part of a multi-model database, however, is its chameleon-like
ability to work with different models of data on the data’s own terms.
A multi-model database sidesteps the traditional problems of index‐
ing relational data by indexing model data naturally. The multi-
model option allows you to index an efficient universal
representation of that data. This makes the data more uniform with
a known structure, thereby speeding up indexing and search.

For example, MarkLogic does this by indexing all elements (XML)
and properties (JSON) and all parent-child relationships for these in
a flexible and manageable compressed-tree representation. At the
end of the day, XML and JSON are both abstractions of a tree-like
data structure. Although there’s a mismatch between those two for‐
mats that we won’t go into here, they are both abstractions of a tree,
and MarkLogic indexes both similarly so that indexing across both
document types provides efficient and quick lookups against both
document types. And assuming documents of similar size and con‐
tent, the index for one data format is not necessarily larger than the
other because the index is a unified, composable structure, split
across nodes in the shared-nothing architecture.

ACID Transactions
As stated earlier, ACID is an acronym that stands for the four prop‐
erties of a database that ensure that the database processes transac‐
tions reliably. A database with ACID transactions ensures that two
concurrent updates will not overwrite, or partially-overwrite, one
another, that a completed update will be stored durably even if there
is a system failure, and that consistent views of data are seen by
queries, even when data changes during the query.

ACID properties are particularly important for a database that must
not lose data, or serves a safety, health, or financially impactful pur‐
pose. Some systems are “good enough” platforms, such as Facebook,
Craigslist, or Google’s ad-serving platform, which all can lose a small
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1 Google, Inc., “F1: A Distributed SQL Database That Scales”.

amount of data in unusual circumstances or give incomplete or
incorrect results without undue harm.

In fact, the Google F1 team claims extensive experience with even‐
tual consistency approaches, which are not ACID, and writes as fol‐
lows:

We also have a lot of experience with eventual consistency systems at
Google. In all such systems, we find developers spend a significant frac‐
tion of their time building extremely complex and error-prone mecha‐
nisms to cope with eventual consistency and handle data that may be
out of date. We think this is an unacceptable burden to place on devel‐
opers and that consistency problems should be solved at the database
level.1

ACID transactions are commonplace in relational databases, and
contrary to what you might have been told, ACID capabilities also
exist in NoSQL and multi-model databases. They’re important
because ACID is the only way for a database to guarantee that users
are looking at consistent and correct data. If the database does not
support ACID, you will need to write application code anytime con‐
sistent and correct data is required. ACID transactions allow appli‐
cation developers to focus on solving business problems without
needing to be experts in distributed systems and databases. If the
database doesn’t support ACID and consistent and correct data is
required, and there are also requirements for failover and high avail‐
ability, your developers will be spending significant time implement‐
ing compensations for the inadequacies of the system(s) being used.
This is energy and effort that could be better spent getting applica‐
tions into production and delivering results.

VoltDB, an in-memory RDBMS, has provided great questions to ask
yourself if you’re considering a system that doesn’t support ACID.

• What happens if two operations want to mutate the same data;
which wins? What happens to the loser?

• How long does it take a replica to reflect changes made to a pri‐
mary?

• What happens if an operation succeeds on a primary copy of
state, but fails on a secondary copy?

• Between the time I read this data and the time I’m going to write
data based on that read, has the original data changed?
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• If my operation has 10 steps, and step 7 fails, do I need to man‐
ually undo steps 1 through 6?

• What happens if two operations want to mutate the same data
at the same time but one fails on a replica on step 7 of 10, and
also two other things go wrong?

Here are a couple other questions that are specific to multi-model:

• What happens if you need to update different parts of the same
entity that are stored in different models? That is, updating a
document and the triples that represent its relationships to
other documents.

• If I update one or more documents, when will my full-text quer‐
ies be able to see the changes made by that update?

The argument against ACID from many NoSQL providers is that it
costs too much in performance and availability. Although there is
some performance overhead for transaction management, modern
systems are often able to provide ACID transactions at minimal
overhead. We expect transactions to be present in new database
products or added to entry-level products in many cases.

Users should be aware that many enterprise capabilities implicitly
depend on an ACID transaction capability. For example, a consis‐
tent database backup is typically not possible if the system has no
notion of an “isolated, atomic” update. The same is true of high
availability (HA): do you require the ability to continue to use the
system with a complete and accurate view of the data even if a parti‐
tion fails? If you require partition failover within a cluster for HA,
how will you guarantee a partition replica will serve the correct data
if you can’t guarantee the master partition has the correct data?
What about disaster recovery (DR)? If you require failover for the
cluster, how will you synchronize a consistent view of data in cluster
A with the same view in cluster B? What about real-time require‐
ments? Do you need to be able to query an accurate and up-to-date
view of the data that’s been committed to the system? Or can you
wait for data to eventually persist?

ACID is a critical component to database success. And yes, multi-
model databases support ACID transactions, HA, and DR; and they
can provide real-time analysis of data that’s been loaded consistently
and correctly.
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Systems that provide a polyglot persistence façade over a collection
of separate, internal databases are generally not ACID compliant,
because the various subproducts will commit and store their updates
independently.

CAP Theorem
In a nutshell, the CAP theorem, also named Brewer’s theorem after
computer scientist Eric Brewer, states that for any distributed com‐
puter, you can only ever have two out of three of the following guar‐
antees:

Consistency
This means that each client always has the same view of the
data.

Availability
This means that all clients can always read and write.

Partition tolerance
This means that the system works well across physical network
partitions.

According to the CAP theorem, if a partition happens, a system
must either be classified as giving up availability or consistency. For
some systems, such as one serving up advertisements, consistency is
not critical—as long as some ads are available, the system works,
and a CA system is appropriate. For others—such as a financial sys‐
tem—an incomplete result is unacceptable, so a CP system is
required.

Any distributed system should be classified as CP. So, if a host (par‐
tition) goes down in a cluster, this is bad, right? As now, we’ve lost
that partition, if it’s no longer available in a distributed database,
what happens to the data for those hosts? Will there be an incom‐
plete view of the data to any subsequent queries as a result? Actually,
your data and your view of that data can remain intact in the follow‐
ing circumstances:

• If your system supports partition failover, you still have a com‐
plete view of your data available on the remaining hosts because
a partition on one host will be replicated to another host.

• You’ll still have a complete view of your data because if you lose
the host and its partitions, the replica partitions in the cluster
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will automatically switch to active. This is how multi-model sys‐
tems enable HA.

The issue here is that the definition of “availability” by CAP is
defined too narrowly to be realistic. Brewer spoke to the widespread
abuse of CAP theorem in his 2012 update, “CAP Twelve Years Later:
How the ‘Rules’ Have Changed”.

Availability in the (proven version of the) CAP theorem is defined
as having every node on both sides of a partition able to respond to
a request. This is an unrealistic requirement. The desired state is that
the data as a whole remain available, and it can. As a counter-
example to CAP, if MarkLogic experiences a partition, only the side
with a quorum (more than 50 percent of hosts) will continue to
respond to requests and be available. Those who’ve used MarkLogic
failover options feel that MarkLogic HA is still good, though,
because it sacrifices “CAP theorem availability”; but in the case of a
partition failure, still remains completely functional in the tradi‐
tional, useful, HA sense.

Security
Whenever we create systems that store and retrieve data, it is impor‐
tant to protect the data from unauthorized use, disclosure, modifica‐
tion, or destruction. Ensuring that users have the proper authority
to see the data, load new data, or update existing data is an impor‐
tant aspect of application development. Do all users need the same
level of access to the data and to the functions provided by your
applications? Are there subsets of users who need access to privi‐
leged functions? Are some documents restricted to certain classes of
users? The answers to questions like these help provide the basis for
the security requirements for any application.

Yes, NoSQL and multi-model systems can be secure. The same level
of enterprise grade security found in an Oracle, Microsoft, or IBM
database can be found in NoSQL and multi-model databases.

Frequently this is not the case, so be careful when
choosing your NoSQL or multi-model database!
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In a single-product, multi-model system, built-in security can be
used to apply different security models to a variety of data via a sin‐
gle API. However, if you have a multiproduct multi-model system,
you really need to ask yourself how that system is being secured.
Different products come with different security capabilities and
models.

Similar to having to compensate in our application layer for a lack of
ACID capabilities, we might want to look for a single-product multi-
model database if we find ourselves plumbing together different
security models. With the proliferation of data and database systems
to support it, we’re seeing an increase in threats to databases every‐
where. Security in a database shouldn’t be an afterthought or bolt-
on. Security really needs to be baked in at a foundational level of the
database. Enterprise multi-model NoSQL systems can come with
powerful and flexible tools for security, allowing us to manage our
data securely without sacrificing performance or agility.

Common Criteria Certification
The Common Criteria for Information Technology Security Evalua‐
tion is an international standard for security by which vendors
demonstrate their commitment and ability to provide security to
their customers. The Common Criteria is the most widely recog‐
nized security certification for IT products in the world—including
databases. There are 25 countries, including the United States, Can‐
ada, India, Japan, Australia, Malaysia, and many countries in the EU,
that recognize the certification.

Getting the certification is a rigorous process. The certifying author‐
ity runs through a battery of tests against a system’s database secu‐
rity target to ensure that it attains the expected results. It also tests
across various areas such as authorization, authentication, security
vulnerabilities (e.g., cross-site request forgery). The product does
not pass the certification process unless it succeeds in each area. So,
if a product vendor says it does authentication on a cluster when it’s
set up in a certain way, the authority ensures that it works like the
vendor’s documentation says it does.

MarkLogic was the first NoSQL database to receive a Common Cri‐
teria certification with MarkLogic 4, and to date (with MarkLogic 8)
is still the only NoSQL database with this distinction. Other stand‐
ards supported by MarkLogic are important as well, such as FIPS
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140. However, these are more narrowly scoped than Common Crite‐
ria, which is widely recognized and is the standard against which all
major database vendors, such as Oracle, Microsoft, and IBM, con‐
tinue to certify, some of them even doing a certification every year.
In total, there are only six database vendors that have earned a com‐
mon criteria certification.
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CHAPTER 7

Multi-Model Database
Integration Patterns

We’ve taken a close look at the capabilities a multi-model database
can bring us in providing agility in data management, securely, and
at scale. After people begin to see the benefits of a multi-model data‐
base as it relates to their particular data integration challenge, the
next often-asked question is, where does a multi-model database fit
in my architecture?

The answer is, it depends. We say that jokingly, but with some truth.
There’s often a notion that a multi-model database, or any new data‐
base being introduced into an environment, will come in to replace
some or all existing systems and perhaps do the job of existing sys‐
tems, either better or with improved performance. Although this
can happen, and system replacement might be a goal of IT or the
business, when introducing a multi-model database into your archi‐
tecture, this often just isn’t the case. What happens most often is
rationalization and improvement of an enterprise’s integration strat‐
egy as a whole, as opposed to incrementally improving a single sys‐
tem.

Other systems exist for very good reasons. The problem with those
systems is that they are silos. Given time, and data integration, a
multi-model database can replace some existing systems, but that’s
not how data integration in these environments begins. More likely,
the technologies disrupted by a multi-model database will be those
supporting data movement, extract, transform, and load (ETL),
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system-to-system connectivity, data workflow transformations,
mappings, and encodings.

The prime use case for a multi-model database is data integration.
As such, data models in these environments are already defined. The
multi-model database will be integrating data from existing systems
and data models. Sure, you can set up a multi-model database for
new use cases, and development of data models upon it might be
completely new, but it’s rare that you’re starting with new data model
development with regard to the data models you’ll be working with.
Those use cases do exist. But for our purposes, we’re going to focus
on data integration because that’s where you’ll find 80 percent of the
use cases for multi-model databases generally start.

An illustration is always helpful. Be it healthcare, financial services,
insurance, manufacturing, or any other industry, companies have
had the same sets of tools at their disposal for data management,
and these tools more or less connect in similar ways. As a result,
without talking to one another, companies across different indus‐
tries have created variations of the same beast for managing their
data. A common, simplified enterprise data pipeline looks similar to
what is shown in Figure 7-1.

Figure 7-1. A simplified enterprise data pipeline

There is often a distinction between run-the-business and observe-
the-business functions. Enterprise data management functions exist
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to manage transformation, master data, and ensure proper distribu‐
tion. Data is copied and transformed to meet various needs.

Front-office online transaction processing (OLTP) systems book an
order, or enter a policy, or commit a trade. This transactional data
comes from some series of external sources back to HQ, and enters a
Rube-Goldbergian colossus of data movement and transformation
to ensure data quality, encode data properly, enrich data with addi‐
tional data, and do some analysis for alerting purposes. Data hops
from system to system, and it might have order numbers and names
normalized by one system, encodings for product names applied at
another, latitudes and longitudes applied at the next, and so on and
so forth. The data mutates with each hop until it finally enters some
central repository or set of repositories. For older, larger, well-
established companies, these likely include mainframes. Because of
the age and cryptic legacy interfaces of mainframes, it’s not uncom‐
mon to send data to a staging area that will feed both the ultimate
legacy target system, and a data warehouse. Or the data warehouse
might be fed from the ultimate source system directly. Feeding this
warehouse requires what? You guessed it! Data movement and
transformation (aka ETL). Let’s dissect the various components in
this pipeline:

ETL
These are the previously mentioned extract-transform-load
processes. From the perspective of data integration, they are the
most costly and time-consuming processes. They are also typi‐
cally the most brittle part of the architecture because they are
the only place where the modeling inflexibility associated with
relational database management systems (RDBMS) gets
addressed.

Master data management (MDM)
Master definitions of important business entities become neces‐
sary as a result of data and business silos. Ironically, the
accepted wisdom in most cases is to create yet another data silo
in the hope that one more RDBMS data store will somehow suc‐
ceed to serve the needs of the entire enterprise. The reality, how‐
ever, is that the same ETL dependencies result in yet another
system that can’t keep up with the pace of business change.
Those dependencies also often make data quality even more
complex to manage.
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Data distribution
Whether an enterprise is in the data distribution business (e.g.,
publishers) or simply has internal stakeholders who rely on the
timely distribution of data (any enterprise), delivering quality
data in a timely fashion is critical. When the data distribution
process depends on a brittle data architecture, data quality and
time-to-delivery challenges are negatively affected by some‐
times even the smallest business change.

Data warehouses
These are the systems that are designed to support cross-line-
of-business discovery and analysis. However, due to modeling
and ETL dependencies, the approach is very much an after-the-
fact exercise that invariably lags—often significantly—the most
recent state of the business. We refer to the functions performed
by data warehouses as observe-the-business functions, since
their job is to report on the state of the business as opposed to
doing something about it.

Data marts
A reaction to the slow-moving pace and lack of completeness of
enterprise data warehouses. Here we copy similar data, at lesser
scale, to a silo for a particular business unit that might combine
a subset of integrated data warehouse data with some of its own
data that might not exist in the data warehouse. Or in some
cases, for the sake of “expediency,” data marts might bypass the
warehouse completely and use the same attributes but call them
something different in their schema. In either case, the creation
of these additional silos adds yet more complexity to overall
enterprise data architecture.

Service-oriented architecture (SOA)
The run-the-business functions have integration needs as well;
however, these are more real-time and transactional in nature.
As a result, the strategy has been to focus mostly on the coarse-
grained functions between systems and leave the data persis‐
tence operations to the silos themselves. This has resulted in a
data integration strategy that is function-focused but not data-
focused, putting integration in the application layer, not with
the database.
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Impact of analysis on operations
The net result of the preceding components found in the enter‐
prise pipeline has been an ever-increasing distance between dis‐
covery and operations, creating data integration choke-points.
Each of those red arrows in Figure 7-1 reduces data quality and
also takes time, because of data having to move and be trans‐
formed and copied through the pipeline.

ETL: this three-letter acronym and its depiction in Figure 7-1 might
look simple, but we know it is much more complex, and ETL
requirements are always much worse than you think. Figure 7-2
provides you with an idea of this complexity.

Figure 7-2. On any whiteboard, ETL is much more complex than it is
given credit for

And here is where a tremendous amount of effort is spent (See
Figure 1-2 in Chapter 1). Business is not static, though. New source
systems are added (either by acquisition and/or new business
requirements) and new ways to use and query data are developed,
thus data management problems grow as new application-specific
silos and new data marts are stood up. With this activity comes an
ever-increasing gap between analysis and operations. And in this
swamp of data movement, transformation and silos are where multi-
model databases often begin.
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Data movement, ETL, and associated tools are the first parts of an
enterprise architecture to be rationalized with the incorporation of a
multi-model database. The architecture will begin to simplify as data
movement is reduced. I think this is an important point. In my
experience, after people get their data into the multi-model data‐
base, they soon forget about the complexity of the landscape they
previously maintained because they begin to focus on the data and
all the exciting new ways they can collect, aggregate, and deliver
information to consumers.

In the existing architecture, delays in synchronizing the transforma‐
tion pipelines and schemas for supporting apps can cause the busi‐
ness to be delayed weeks in getting answers to the questions it wants
to ask of its data. Also, with this complexity comes more opportuni‐
ties for risk and error. Data can become stuck anywhere along the
pipeline, which causes more headaches when trying to capture a
complete picture of what the data looks like. Reconciliation proce‐
dures come with their own set of challenges and schedules.

With multi-model databases, source systems for ingest can change,
and none of the data will be dropped on the floor. You query against
the data you know about and continue to harmonize after you
notice that the data has changed. Multi-model databases with alert‐
ing can detect a change in the shape of the records being ingested
and then prompt you to do some analysis and incorporate any new
attributes. Data will be loaded as is, harmonized, and delivered to
downstream systems. Multi-model database solutions for data inte‐
gration often follow a pattern that very much looks like a data hub,
as illustrated in Figure 7-3.

Figure 7-3. Operational data hub pattern
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It depends comes into play again with regard to the size of the data
integration problem to be solved and the availability of those in the
organization to begin implementing a multi-model database solu‐
tion while also managing other projects. None of this stuff is like
flipping a switch. You don’t purchase a multi-model database, move
your data over, flip a switch, and all applications start using the hub.
In reality, a phased approach will be enacted. Here again, we see the
benefit of a multi-model database’s ability to scale out as demand
increases come into play.

Enterprise Data Warehouse
Likely there are some integration patterns already in place where
you are introducing a multi-model solution. At a 30,000-foot level,
where multi-model fits within these patterns will look something
similar to Figure 7-4.

Figure 7-4. Multi-model working with an enterprise data warehouse

As an augmentation to an enterprise data warehouse (EDW), a
multi-model system will be the rapid aggregator and harmonizer of
data to feed to the EDW. Here ETL and data movement are reduced.
An EDW is often found with batch-oriented workloads. It is com‐
monly used for analysis only, contains only structured data, and is
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ETL- and model-dependent. After the data is in the warehouse,
analysis is reactive and query-based.

The multi-model database alongside an EDW allows you to store all
your data after loading it as is. The EDW becomes a consumer (one
of many) to the multi-model database. Real-time interactive queries
will be possible against the multi-model database. The multi-model
database provides a bridge between analysis and operations, allow‐
ing for two-way analysis, cross-line-of-business operations, and pro‐
active alerting when identifying new information arriving in the
system.

SOA
If you have a SOA infrastructure, it usually has the following
characteristics:

• Function-focused
• Emphasis on data movement
• SLA-dependent on downstream systems
• Ephemeral information exchange
• Least-common-denominator data interaction

When augmented with a multi-model database (see Figure 7-5),
transformations can be removed from the application layer. Muta‐
tions to data previously occurring within services now can be cap‐
tured to enhance a SOA to include the multi-model data hub
benefits of having:

• A data-centric service architecture (both data- and function-
focused)

• Emphasis on data harmonization
• The ability to proxy for offline systems/services as appropriate
• Durable information interchange and management
• An interchange architecture that throws nothing away in the

data lifecycle, enhancing data provenance
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Figure 7-5. Multi-model working within a SOA environment

Data Lake
As many organizations are finding, copying data to Hadoop Dis‐
tributed File System (HDFS) does not magically make Hadoop use‐
ful. Mapping data that arrives in HDFS to business entities with
meaning makes it useful. With Hadoop came more attention on
scale and economies of scale. It brought with it the promise of
addressing a variety of structured and unstructured data and expan‐
ded what was possible with analysis and observe-the-business func‐
tions. However, even though anyone can load anything as is to a
filesystem, the gaps that come with Hadoop require a level of effort
to implement logic to make up for its shortcomings, and with this
comes great complexity. Hadoop can be lacking in enterprise fea‐
tures such as security and operational maturity. It exists primarily in
the analytical domain, focusing on observe-the-business type prob‐
lems and leaving run-the-business functions to legacy technologies.

As a modular data warehouse, a Hadoop distribution is a collection
of many open source projects, which are fit-for-purpose technolo‐
gies. There are differing qualities of service and maturity across
projects, and significant expertise and effort is required to configure
and integrate these projects. As a result, there is a lot of churn, and it
is possible to implement something similar to our simplified enter‐
prise data pipeline in Hadoop (see Figure 7-1), actually widening yet
again the gap between analysis and operations. It is possible to
actually create silos of content within HDFS, except these silos are
more technical in nature, as you store multiple models for specific
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technical representations of the same data for various applications: a
model for Hive, a model for SOLR, a model for Spark, and so on.

A data lake on its own usually has the following characteristics:

• Batch-oriented
• Analysis only
• Saves everything and processes with brute force
• Simplified security model
• Limited or no context
• Multi-layered ecosystem that encourages technical silos

It’s not uncommon to find people embracing multi-model databases
to augment their data lakes (see Figure 7-6) to simplify the environ‐
ment so that they can either slosh information in as is from HDFS,
or use HDFS as a tier of storage of the multi-model database itself.
Both cases deliver value more rapidly within a system with a more
complete feature set. Augmenting a data lake with a multi-model
database has the following benefits:

• Makes the entire architecture real-time capable
• Provides two-way (i.e., read and write) analysis
• Brings agility and “three Vs” capability to run-the-business

operational functions
• Save and index everything for sub-second processing
• Mature and fine-grained security model
• Advanced semantics capability for rich context
• Reduction or elimination of technical silos
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Figure 7-6. Multi-model working with a data lake

As mentioned previously, HDFS is often used in conjunction with a
multi-model database for archive purposes. However, it also can be
used as a source of enrichment.

For instance, the Internet of Things (IoT) presents new sources of
data for data integration that we’re beginning to see enter into multi-
model systems. Sensor data on its own might not be very valuable
(who cares if every five minutes a CO2 sensor reports, “All OK
here!”), and so landing the mass of IoT data quickly to a low-cost
filesystem like HDFS can make sense. But, if we examine the IoT
data in aggregate and over time, we can mine IoT data from HDFS
and bring in aggregations or enrichment to combine with the data
from other sources we’ve integrated in multi-model. In this way, if
we combine the aggregate driving habits for a particular car and
match them with the structure and unstructured policy information
for an insurance customer and combine this with weather data and
maps, we can develop applications that deliver actionable intelli‐
gence: “It looks like you’re on a road with a road out ahead, and
you’re not driving a four-wheel drive vehicle. Here’s an alternate
route.”

Microservices
Microservices refer to an architectural style that provides an
approach to developing a single application as a collection of inde‐
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1 James Lewis and Martin Fowler, “Microservices: A definition of this new architectural
term”, MartinFowler.com, March 25, 2014.

2 See Sam Newman’s book on the subject, Building Microservices (O’Reilly).

pendent services. A single microservice is an autonomous service
that performs one function well and runs in its own process com‐
municating via lightweight mechanisms, often an HTTP resource
API and RESTful interfaces. Services in this framework are modeled
around business domains, instead of technology layers, so as to
avoid many of the problems found in a traditional tiered architec‐
ture. Services are also independently deployable, and you can auto‐
mate that deployment. A minimum amount of centralized
management is required for microservices, which might independ‐
ently utilize different data storage technologies and be written in dif‐
ferent programming languages to support them.1

Microservices are becoming increasingly attractive in enterprise for
primarily two reasons:

• Microservices reduce or eliminate the dependency on the tradi‐
tional, monolithic enterprise application.

• Microservices serve an agile, fast-paced development cycle and,
because they are at once flexible and focused, they can serve the
needs of stakeholders across an organization.

The microservice architecture deconstructs the monolith into a
suite of modular, composable services that allow for independent
replacement and upgradeability.2 However, like the SOA of the last
decade, if there is a focus only on functions and not data, data silos
can proliferate even more rapidly. That is why a single-product
multi-model database fits well in this environment, because it
encapsulates many dependencies within a single deployable unit,
such as the following:

• Database
• Search
• Semantics
• HTTP server with REST API
• Client APIs (Java, JavaScript)
• Scalability
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• HA/DR
• Security

However, the key benefit here is not so much around technology
stack simplification; rather, it is more around ensuring that the ser‐
vice architecture is data-focused to ensure data harmonization
within the services architecture, as opposed to proliferating data iso‐
lation (see Figure 7-7).

Figure 7-7. Multi-model and microservices (a multi-model database
can operate on-premises or in the cloud)

Rethinking MDM
Now, MDM on its own isn’t a pattern, per se, with regard to archi‐
tecture. But, we do notice a pattern and similarities with how many
MDM projects operate, are managed, and tend to fail. They often
attempt to integrate data by using relational tools and fall victim to a
workflow pattern that looks very similar to our development exam‐
ple for integrating data sources in Figure 1-2 in Chapter 1.

But what if MDM projects were business-outcome driven? Typically,
MDM project progress is often measured in terms of technical mile‐
stones. But a couple of years later, the end result still doesn’t look
like the outcome people actually want. A multi-model database sup‐
ports an agile approach to mastering data that can be geared exclu‐
sively toward business outcomes (see Figure 7-8). A multi-model
system can handle partially done MDM, whereas an RDBMS can’t.
This means changing business goals during an MDM project that’s
already in progress is not a problem for a multi-model database. We
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reap all the benefits of being able to work with data in a fashion sim‐
ilar to Figure 3-9 in Chapter 3.

Figure 7-8. Multi-model for MDM

Benefits of using a multi-model database to support MDM projects
include the following:

• Achieving progress incrementally tied to business drivers and
events

• Measuring progress in weeks and months, not years
• Saving “all of the breadcrumbs” to provide a clearer view of

provenance
• Increasing data quality—minimizing the need for fuzzy matches
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CHAPTER 8

Summary

The rapid growth of data, including the digitization of human com‐
munication, has created a proliferation of data silos throughout
enterprises. Trying to see across these silos—creating a 360-degree
view—has been an arduous task, if not a losing battle, as companies
spend untold millions trying to buy tools that help them parse data
in the traditional, relational way.

The challenge is integrating data from silos:

• ETL and schema-first systems are the enemy of progress and
getting things done.

• We are going to use many models (relational, mainframe, text,
graph, document, key-value).

• We are going to use multiple formats (JSON, XML, text,
binary).

• Much of our data actually comes structured from relational
tables, but the same entity type can be modeled in different ways
across multiple different silos.

• The natural approach has been for our people to code their way
out of the problem of many models and polyglot persistence
with many technical silos.

• The next step is to move the complexity into multi-model data‐
base management systems (DBMS) products that load as is.
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• This means new products, new evaluation criteria, and new
(higher) expectations for DBMS as we move forward and
evolve.

• A significant unlearning of biases and assumptions is required.
• We will be introducing new products into existing architectures.
• Change management will be affected because when we do the

work and how quickly we accomplish it will change.

In addition to the data, the context of data is not necessarily in the
database. Today, it might be stored in Microsoft SharePoint, a
Microsoft Excel spreadsheet, in an expert’s head, or an entity rela‐
tionship diagram printed out a few months ago and hung on a DBA’s
office wall—everywhere except for the database where the data is
stored. Making sense of the data within one database is difficult.
Across data silos it can be impossible. This makes getting and recon‐
ciling metadata and reference data a brittle and expensive process.

The drive to shorten development cycles, meet business needs, and
produce an agile, data-centric environment has created a need for a
flexible DBMS that can store, manage, and query the right data
model for the right business function. A multi-model database
allows us to capture data’s context and store it in the database along
with the data, to provide auditability and enhance how we operate
with our unified data in the future.

A true multi-model DBMS provides the following:

• Native storage of multiple structures (structure-aware)
• The ability to load data as is (no schema required prior to load‐

ing data)
• Ability to index multiple structures (different indexes)
• Multiple methods of querying those different structures (differ‐

ent APIs and query languages)
• Composable indexes and APIs (use features together without

compromise)
• Proven enterprise capabilities (ACID, scalability, HA/DR, fail‐

over, security)
• Ability to run on-premises or in the cloud
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• All in a single software product designed specifically to address
multi-model data management.

With all these capabilities of a true multi-model DBMS at our dis‐
posal, we can do the following:

• Rapidly deploy operational data hubs to integrate our data silos
• Load only the data we require or want as is, with no upfront,

schema-first requirement
• Employ the envelope pattern to keep our source data in a shape

aligned closely to its native data model
• Harmonize source data with standardizations of field names,

attributes, and structure
• Add additional rich information to our data envelopes such as

lineage, provenance, triples, and any other metadata we might
want to store

• Deliver the data we persist in multiple formats to multiple con‐
sumers with governed transform rules

• Integrate our silos easily into existing architectures, disrupting
ETL and data movement at first and potentially EOL’ing other
systems as we progress, all to the benefit of simplifying our
infrastructure environments

• Integrate our silos in about a quarter of the time that traditional
methods take

Whatever we practice, we become professional at it. Over a long
period of time, many have become experts at working with rela‐
tional systems. From developers and DBAs all the way up through
the groups and individuals in the business organization, the impacts
on how we integrate (or fail to integrate) data from relational sys‐
tems and other silo’d data sources are felt. We can’t solve the prob‐
lem with the same thinking and tools that caused the problem in the
first place. To achieve a unified view of our data, we’ll need to
employ techniques that we never have before. Fortunately for us, we
are not alone. There are many already down this path, transforming
their data pipeline architectures and their business organizations to
enjoy rapid and tremendous success with multi-model databases.
We can learn from the new, updated practices of their data-
integration techniques using multi-model database management
systems to begin our own journey.
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