
RETHINK DATA
MODELING
MARKLOGIC WHITE PAPER • MARCH 2016

Traditional data modeling is inadequate. Today, organizations are constrained by relational

technology and they need a better approach to data modeling in order to integrate data faster

and build smarter applications. For that reason, organizations are now choosing a multi-model

approach using NoSQL and semantics.

CURRENT STATE ASSESSMENT
Is your organization in need of change, or do you think you are doing all right with your data? The answers to the
questions below provide a baseline assessment to address that question. The more “YES” answers, the more likely
your current database(s) are not meeting your organization’s needs.

YES NO

BUSINESS
QUESTIONS

1. Is there data that is important to your organization that is not in a
database?

✔ û

2. Are there multiple databases with related data, but no integrated
view of that data?

✔ û

3. Are there numerous data sets spun off from core systems and no
longer centrally managed or governed?

✔ û

4. Are there large IT projects that have been behind budget or failed to
launch due to data integration challenges?

✔ û

5. Are there database schemas so complicated that no one wants to
touch them anymore?

✔ û

TECHNICAL
QUESTIONS

6. Does data modeling ever slow down or hinder the process of
application development?

✔ û

7. Are there relational tables in which column names were changed or
been assigned new meaning “just to make it work”?

✔ û

8. Are there frequent database schema changes each month, and are
some of the changes unsuccessful?

✔ û

9. Is important metadata or reference data stored outside of the
database, in an Excel spreadsheet or some other place?

✔ û

10. Are there ever performance problems or bugs that may have
resulted from complicated middleware?

✔ û

Contents
Introduction ...1

Traditional Data Modeling Is Inadequate ...2

What We Were Promised

What We Got

Now We’re Paying the Price

Specific Problems With Relational Modeling ...4

Difficulties Modeling Entities and Relationships

Difficulties Maintaining Context

Leading Organizations Adopting New Approaches ..6

Managing Programs Metadata for the BBC’s iPlayer Streaming Service

Building a Semantic Metadata Hub at a Leading Entertainment Company

Intelligent Analytics for Academic Publishing at the APA

The Benefits of NoSQL Document Databases ..8

Flexibility of the Document Model

The Impact of a Better Approach

The Added Benefits of Semantics ..10

A Simple and Powerful Data Model

The Impact of a Better Approach

The Multi-Model Approach Combining NoSQL and Semantics ..12

Simplicity of a Unified Database

More Flexibility, More Power

Improved Query Capabilities

Get Going With a Better Data Model ..13

More Information

INTRODUCTION
Data modeling is crucial for every organization. Data
models define the details of how information is stored,
documenting real life people, places, and things
and how they relate to one another. For example,
a company has customers, and customers have
purchases. How these entities and relationships are
modeled forms the basis for using and sharing data and
directs how organizations build applications. At a high
level, data models represent how organizations think
about the world in which they operate.

Unfortunately, the traditional approach to data
modeling is inadequate. The process for data modeling
involves developing a conceptual model of entities
and relationships based on the domain of interest,
translating that into a logical model, and then further
translating that into a physical model that can be
implemented in the database. This approach, known as
entity-relationship modeling (“ER modeling”), has been
a standard since it was first proposed in 1976.

But in practice, database designers ignore conceptual
modeling. According to one study, there was not a
single instance of conceptual ER modeling among the
Fortune 100 companies surveyed.1 Why is that? The
problem is that the world has too much complexity
to fit into rows and columns of a relational database.
Looking at an ER diagram for a relational database,
it is not possible to discern much about the business
or the logical whole of what is being described. There
is a disconnect and the physical models just end up
as convoluted, poor depictions of the world they are
meant to portray.

Organizations make valiant efforts to build and maintain
foolproof relational databases perfectly connected
together. But eventually a change is required—a new
data source comes around, a different question is
asked, or data must be integrated into a new system.
Relational databases show their weaknesses when
these events occur, but such events are now common.
For the past 30 years, experts have tried to make
relational databases work, but today, data modeling
remains an unsolved problem.

1 M. L. Brodie and J. T. Liu. “The power and limits of relational technology in the
age of information ecosystems.” Keynote at On The Move Federated Conferences,
2010.

To integrate data faster and building smarter
applications, organizations are adopting an alternative
multi-model approach using NoSQL and semantics.
NoSQL and semantics provides a more flexible,
descriptive, and useful model. In the words of one
MarkLogic customer, NoSQL and semantics “removes
the shackles of relational technology.”2

Currently, there are many other new databases on
the market, but MarkLogic® is the only enterprise-
grade, multi-model database that combines all of
the benefits of a NoSQL document database and
semantics in a single platform. It is for this reason that
leading organizations such as the British Broadcasting
Company (BBC), NBCUniversal, Broadridge Financial
Solutions, Amgen, and others are rethinking data
modeling with a multi-model approach using
MarkLogic.3

2 Watch the interview with Paolo Pelizzoli, SVP and Global Head of Archi-
tecture at Broadridge Financial Solutions, online at https://www.youtube.com/
watch?v=TB1tLrM_z1k.

3 National Commission on Terrorist Attacks on the United States, The 9/11
Commission Report: Final Report of the National Commission on Terrorist Attacks
upon the United States: Official Government Edition (Washington, DC: U.S. G.P.O.
2004) p.401,416. <https://www.gpo.gov/fdsys/pkg/GPO-911REPORT/pdf/GPO-
911REPORT.pdf>

THE NEED FOR A BETTER APPROACH
Data integration is one of the most pressing
challenges for organizations today. It matters
to banks that need better reporting due to
increased oversight, companies undergoing
mergers and acquisitions, and governments that
must improve national security.

Regarding national security, the 9/11
Commission report stated the importance
of data integration, stating that, “A ‘smart’
government would integrate all sources of
information to see the enemy as a whole.”3
Unfortunately, traditional database design does
not capture enough information to enable data
integration—it falls short of even capturing the
kind of information that would be valuable for
data integration. To integrate data faster and
easier, organizations need a different kind of
database.

1

https://www.youtube.com/watch?v=TB1tLrM_z1k
https://www.youtube.com/watch?v=TB1tLrM_z1k
https://www.gpo.gov/fdsys/pkg/GPO-911REPORT/pdf/GPO-911REPORT.pdf
https://www.gpo.gov/fdsys/pkg/GPO-911REPORT/pdf/GPO-911REPORT.pdf

TRADITIONAL DATA MODELING
IS INADEQUATE
WHAT WE WERE PROMISED
In a famous computer science paper published in
1976, Peter Chen put forward the idea of capturing
information about the real world as entities and
relationships.1 The new approach, called ER modeling,
was intended to unify multiple storage and transaction
models to better represent the real world. It soon
became a standard for data modeling.

In ER modeling, database designers look at the most
import entities (e.g., objects with a physical existence
such as an employee, car, or house; or an object with
a conceptual existence such as a company or job).
Next, they distill out the attributes (e.g. the name, age,
address, and salary of the employee). This information
then guides implementation of the physical database.
This process involves three different diagrammatic
models, described below.

CONCEPTUAL DATA MODEL
The conceptual data model identifies the general
entities and relationships at a high level. It uses
non-technical terms that executives and managers
understand, and serves as a point of reference for the
technical specifications that follow.

Figure 1: Example of a simple conceptual data model
(Source: http://www.1keydata.com/)

LOGICAL DATA MODEL
The logical data model is more detailed than the
conceptual data model. It standardizes people, places,
things, and relationships—and the rules and events
among them. It does not go so far as to specify the

1 P. Chen. The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976. <http://www.inf.unibz.it/~nutt/
IDBs1011/IDBPapers/chen-ER-TODS-76.pdf>

technology for implementation, but it does anticipate
the physical model that follows. It includes a normalized
view of the entities (tables), attributes (columns/fields)
and relationships (keys).

Date

PRODUCT

SALES

STORE

Date Description
Month
Month Description
Year
Week
Week Description

TIME

Product ID

Product Description
Category
Category Description
Unit Price
Created

PRODUCT

StoreID

Store Description
Region
Region Name
Created

STORE

Store ID (FK)
Product ID (FK)
Date (FK)

Items Sold
Sales Amount

SALES

Figure 2: Example of a simple logical data model
(Source: http://www.1keydata.com/)

PHYSICAL DATA MODEL
The physical model is the closest representation to
how the data is actually stored in the database. It is
detailed, technical, and technology (and even vendor)
dependent. It includes the actual table and column
names, and takes into consideration performance
goals, indexes, constraint definitions, data distribution,
triggers, stored procedures, and more.

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

STORE_ID: INTEGER
PRODUCT_ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT

FACT_SALES

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

Figure 3: Example of a simple physical data model
(Source: http://www.1keydata.com/)

TIME PRODUCT

SALES

STORE

2

http://www.inf.unibz.it/~nutt/IDBs1011/IDBPapers/chen-ER-TODS-76.pdf
http://www.inf.unibz.it/~nutt/IDBs1011/IDBPapers/chen-ER-TODS-76.pdf

WHAT WE GOT
Unfortunately, when put into practice, the conceptual
ER diagrams meant to describe entities and
relationships get immediately supplanted by physical
models designed according to the hard constraints of
relational databases. The conceptual models are often
not even produced. Database designers jump straight
to implementing physical models, without building the
foundation to guide their development.

In one study, researchers could not find a single
instance of conceptual ER modeling among the ten
Fortune 100 companies they surveyed, and they
also found significant problems with data modeling
in general. They found that, “A typical Fortune 100
company has about 10 thousand different information
systems, a typical relational database is made of
over 100 tables, each containing between 50 to 200
attributes. Formalized conceptual models, as well as
the theory developed around normalization, are not
used. Physical modeling is frequently delayed until
performance problems arise.”2 Another database expert
reports that, “[the database design] for 50 percent of
applications is substantially flawed.”3

Why are database designers not doing proper data
modeling?

The main problem is that the world has too much
complexity, and businesses operate faster than IT can
keep up. Conceptual models that depict the real world
do not translate well into the physical models that DBAs
and architects use to build their relational databases.
Database designers focus enormous amounts of time
on the physical models, designing ways to persist
data in relational databases in ways that relational
databases can handle. This traditional approach results
in a rigid system of tables connected together using
primary keys, foreign keys, and joins. Unfortunately, it

2 M. L. Brodie and J. T. Liu, 2010.

3 Roberto V. Zicari, “How good is UML for Database Design? Interview with
Michael Blaha.” ODBMS.org, July 25, 2011. <http://www.odbms.org/blog/2011/07/
how-good-is-uml-for-database-design-interview-with-michael-blaha/>

is a poor representation of the world it was designed
to portray. It is not ideal for application development
due to the problem of impedance mismatch. And, it is
also problematic when a change is required, a new data
source comes along, or different data sources need to
be integrated together from silos—events that are all
quite common today.

NOW WE’RE PAYING THE PRICE
What typically happens in most organizations is
that IT lags behind the pace of the business. With
the database architecture, tables and columns start
accumulating in the database until no one knows quite
how the data model relates to the actual business
entities, and no one can be sure how a change in
one place may affect other aspects of the model. The
database becomes overly complex, difficult to reason
through, virtually impossible to change, and no one
wants to touch it anymore.

Figure 4: Snapshot of a complex relational model
(Source: http://www.plandora.org/docs/mer.png)

Most organizations do not have just one schema,
either—they have multiple schemas across various
silos. Additional schemas often appear as a result
of a merger, acquisition, or integrating a new data
provider. These schemas accumulate and grow over

 “ The main problem is that the world has too much complexity, and
businesses operate faster than IT can keep up.”

3

http://www.odbms.org/blog/2011/07/how-good-is-uml-for-database-design-interview-with-michael-blaha/
http://www.odbms.org/blog/2011/07/how-good-is-uml-for-database-design-interview-with-michael-blaha/

time, creating layers upon layers of complexity. So, it
becomes more expedient to just spin off a subset of
the data to a new data mart needed for a particular
application or report. Of course, this only results in
more copies of the data floating around, more security
and data governance challenges, and more problems
integrating data and building applications.

To integrate data from such disparate silos, the
organization must go through the painful process of
determining the similarities between attributes, usually
without any associated metadata. At one large Swedish
bank, for example, it was discovered that across their
many databases, there were 31 different definitions
for “nominal amount”—and no additional information
to indicate what the data actually represented. The
confusion with just that one important term results in
many trickle-down costs and risks. Now imagine that
problem happening with hundreds or thousands of
terms.

These problems are not just headaches for DBAs. They
create serious risks for the entire organization, higher
costs, and longer project timelines. One study reports
that, “40% of the cost associated with information
systems is due to data integration problems.”4 And,
in 2015 alone, organizations spent $5 billion on data
integration software.5

Over the past 30 years, experts have tried to make
relational databases work, but traditional data modeling
is inadequate. The fundamental mismatch between
relational databases and the increasingly varied data
that today’s organizations handle will only become
more problematic if left unchanged. Forrester Research
sums up the problem: “As data structures get more
complex and data volume grows, traditional relational
databases—and their need for a pre-defined schema
are falling short.”6

4 M. L. Brodie and J. T. Liu, 2010.

5 Gartner. Forecast: Enterprise Software Markets, Worldwide, 2011-2018, 4Q14.
2014. <https://www.gartner.com/doc/2944023/forecast-enterprise-software-
markets-worldwide>; Includes: Data Integration Tools, Data Quality Tools, and Other
Data Integration Software.

6 The Forrester Wave™: NoSQL Document Databases, Q3 2014; An Evaluation
Of Four Enterprise-Class NoSQL Document Databases Vendors. Noel Yuhanna with
Leslie Owens, Emily Jedinak, and Abigail Komlenic.

SPECIFIC PROBLEMS WITH
RELATIONAL MODELING
In this section, we elaborate on the specific challenges
that make relational databases ill-equipped for modern
day data modeling. If you are interested in a broader
discussion covering all of the key reasons why relational
databases are not working for today’s data, read
the white paper Beyond Relational, which discusses
other aspects such as application development and
scalability.

DIFFICULTIES MODELING ENTITIES AND
RELATIONSHIPS
When looking at an ER diagram for a relational
database, it is not possible to discern much about the
real life business model or the logical whole of what is
being described. That data model does not translate
well into today’s world of dynamic, complex, connected
relationships.

When doing relational modeling, the process typically
involves the following steps:

1. Give each attribute its own field
2. Group attributes into tables
3. Assign one primary key to each table
4. Eliminate duplicate attributes

The problem is that relationships between entities
are defined only inherently via the rows and columns
in tables, or by using pointers between tables based
on foreign key relationships and constraints. Some
types of relationships such as associations or inherited
relationships are implicit, documented and governed
outside the database, or just ignored. The more
complex the information is, the more rows, columns,
and pointers. This gets overly burdensome to model,
and even more difficult to query.

As a business changes, the schema must also be
updated. Unfortunately, making changes to relational
schemas is usually time consuming and expensive.
For one MarkLogic customer, “Even a simple change
like adding or replacing a column in a table might be a

 “ 40% of the cost associated with information systems is due to data
integration problems.”

4

https://www.gartner.com/doc/2944023/forecast-enterprise-software-markets-worldwide
https://www.gartner.com/doc/2944023/forecast-enterprise-software-markets-worldwide
http://www.marklogic.com/resources/beyond-relational/

million dollar task.”7 The process of managing change
with relational databases usually involves building
out separate join tables to capture many-to-many
relationship and doing a lot of defensive programming
to avoid problems downstream. Such manual tasks are
error prone and do not provide a long term solution for
managing change.

Relational databases also have no universally accepted
standards for modeling and querying people, places,
and things. Each attribute in a relational database
stands on its own, and every DBA models it differently.
Furthermore, because of data variety, database
designers are often working with tables that have been
populated with rows and rows of NULL cells (“sparse
data”) or with column names described with generic
VARCHAR data types that are part of tables with
enigmatic names that only a few people understand.
These issues destroy cohesion and cause problems for
normalization and querying. Ultimately, the end result of
relational shortcomings is that database designers are
left to convey, usually externally, how to find meaning
and join distinct artifacts into a logical whole.

DIFFICULTIES MAINTAINING CONTEXT
Relational databases provide a mathematically
consistent view of the data, but the valuable context
around the data—the semantics of the data—is lost.

7 According to one customer at a leading Fortune 100 technology company, the
task of adding a column could take them up to a year and cost over a million dol-
lars. For other more complex data modeling projects involving master data manage-
ment, even lengthier timelines of over five years have been reported.

This was one of the main points in Peter Chen’s paper
on ER modeling, which stated that, “The relational
model is based on relational theory and can achieve
a high degree of data independence, but it may lose
some important semantic information about the real
world.”8

As an example, consider a database that has a table
of parts with a column named “Size,” and a column
value of “42” in one of the rows in that column. But,
where is the contextual information: What are the units
of “42”? What is the tolerance? Who measured it? Is it
an estimate? When was it measured? Who can see this
column?

Things are even more problematic when handling data
that is more qualitative, less structured, or has class
or property relationships that must be accounted
for. Consider a table with a column name labeled
“Customer.” What does that label mean? How are
customers related to other things that are important to
the organization? Is this group of customers a subclass
of a broader group of customers? Which systems can
generate customers? How are customers represented
to the applications? How many customers does the
organization know about? Which customers do not
adhere to the business rules?

Unfortunately, the context of the data is not in
the database. If it does exist, it may be stored in

8 P. Chen, 1976.

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

STORE_ID: INTEGER
PRODUCT_ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT

FACT_SALES

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

STORE_ID: INTEGER
PRODUCT_ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT
ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT

FACT_SALES

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORESTORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

STORE_ID: INTEGER
PRODUCT_ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT

FACT_SALES

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

STORE_ID: INTEGER
PRODUCT_ID: INTEGER
DATE_ID: INTEGER

ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT
ITEMS_SOLD: INTEGER
SALES_AMOUNT: FLOAT

FACT_SALES

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

DATE_ID: INTEGER

SALES

DATE_DESC: VARCHAR(30)
MONTH_ID: INTEGER
MONTH_DESC: VARCHAR(30)
YEAR: INTEGER
WEEK_ID: INTEGER
WEEK_DESC: VARCHAR(30)

DIM_TIME

PRODUCT_ID: INTEGER

PRODUCT_DESC: VARCHAR(50)
CATEGORY_ID: INTEGER
CATEGORY_DESC: VARCHAR(30)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_PRODUCT

STORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORESTORE_ID: INTEGER

STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
STORE_DESC: VARCHAR(50)
REGION_ID: INTEGER
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE
REGION_NAME: VARCHAR(50)
UNIT_PRICE: FLOAT
CREATED: DATE

DIM_STORE

PARTS

PART_ID
DESCRIPTION
WEIGHT
CATEGORY
SIZE

Units?

Tolerance?
Measured by?

Date measured?

Viewable by?

Context for SIZE?

Figure 5: Relational databases are not designed to store context

5

SharePoint*, a Microsoft Excel* spreadsheet, or an ER
diagram printed out a few months ago and hung on a
DBA’s office wall—everywhere except for the database
where the data is stored. Making sense of the data
within one database is difficult. Across data silos it
can be impossible. This makes getting and reconciling
metadata and reference data a brittle and expensive
process.

LEADING ORGANIZATIONS
ADOPTING NEW APPROACHES
Relational databases provide robust technology and
there are many reasons why they are the most used
type of database. But it is a mistake to think that
relational databases should be used to do things they
were not designed for. Driven by the need to change,
organizations today are fundamentally rethinking their
approach, and MarkLogic provides an alternative
using NoSQL and semantics that solves many of
the challenges with traditional data modeling. In this
section, we quickly highlight some of the successes
that organizations have had in transitioning to a new
approach with MarkLogic.

MANAGING PROGRAMS METADATA FOR THE
BBC’S iPLAYER STREAMING SERVICE
The BBC was the first global media company to
embrace using NoSQL and semantics for a mission-
critical application at scale. For the 2012 Olympics,
the BBC moved from a relational database to a new
architecture built using NoSQL and semantics in
order to automate the aggregation, publishing, and
repurposing of content.

Since then, the BBC has expanded its use of NoSQL
and semantics. One example is with the iPlayer TV
streaming service, which was relaunched in 2014
using MarkLogic as the main component for storing
and delivering metadata about the BBC’s programs.
They made the change because their legacy system,
based heavily on MySQL and Memcached, showed

performance and reliability problems. And, the whole
end-to-end process for making new content available
on iPlayer was too slow, often taking days.

Figure 6: BBC iPlayer TV streaming service

With the increasing volumes of users and need for a
simpler and more reliable system, the BBC knew they
needed a change. After struggling to solve the problem
with relational technology and spending a lengthy
period of time prototyping and testing alternatives with
major database vendors, the BBC chose MarkLogic.
With MarkLogic, the new iPlayer system handled over
3 billion program requests in the first year. Performance
increased, with SQL queries that used to take 20
seconds only taking 20 milliseconds with MarkLogic.
And, the end-to-end process for making content
available dropped from days to minutes. The Lead
Technical Architect at the BBC stated that, “MarkLogic
makes things so simple that the architects struggle to
get their head around it!”

BUILDING A SEMANTIC METADATA HUB AT A
LEADING ENTERTAINMENT COMPANY
A large entertainment company uses MarkLogic to
manage hundreds of thousands of product titles,
characters, distribution rights, and technical information
that are all vitally important. Previously, the data was
held in disconnected information silos, resulting in
data quality issues, inconsistent governance, and an
inability to re-use data efficiently. They even had to
employ couriers to hand-carry physical assets between
buildings.

 “ With MarkLogic, the new iPlayer system handled over 3 billion program
requests in the first year. Performance increased, with SQL queries that used
to take 20 seconds only taking 20 milliseconds with MarkLogic.”

6

The solution to their problem was to establish a
centralized, semantic metadata hub using MarkLogic.
The hub makes it possible to store and access all of
the organization’s metadata about its assets in one
place, enabling rapid response to emerging business
challenges and changes in the competitive landscape.

The hub uses MarkLogic to store and search the data
and also Smartlogic*, a MarkLogic partner, for
classification, publishing, taxonomy and ontology
management, and semantic enrichment functions. The
hub works by ingesting data from multiple silos and
then providing a natural language search interface to
query the data, in addition to providing the data to
downstream systems.

Because the data model is driven by NoSQL and
semantics, users can leverage the relationships in
the data. For example, it is easy to see how a movie
had a certain star appearing in it, that she played a
specific character in that movie, that the character
was from a specific place, and that the movie was
animated. A relational database, by contrast, would
have difficulty managing all of these relationships, and
the costs would be prohibitive. The organization was
also able to create a simpler information architecture
since MarkLogic combines a database, search, and
application services in one platform. With alternative

approaches, the organization would have needed to
integrate at least three different technologies to achieve
the same level of functionality.

INTELLIGENT ANALYTICS FOR ACADEMIC
PUBLISHING AT THE APA
The American Psychological Association (APA) gets
over 70 percent of its revenue from publishing. Their
“first to information” advantage is crucial. But they
had problems with their large database of 57 million
articles, books, journals, dissertations, videos, tests,
measures, etc.—to be accessed by over 150,000 users.
The APA’s legacy solution based on Oracle and Lucene/
Solr (a relational database and a search engine) showed
inconsistent search results, a poor user experience,
and slow content turnaround. It was cumbersome to
manage the large database with millions of rows. And,
although highly structured, the data was not structured
in a way that was suitable for relational databases. The
APA also had unnecessary costs due to having too
many servers and too many developers focused on
maintaining the legacy system.

The APA transitioned to MarkLogic to manage their
data pipeline. This simplified their architecture, as
MarkLogic is a database with built-in search. They also
took the next step to enrich their data using semantics
so that their users can explore data and analyze
relationships between authors, subjects, journals, and

Figure 8: Visualizations of APA data using semantics

 “ With alternative approaches, the organization would have needed to
integrate at least three different technologies to achieve the same level of
functionality.”

Figure 7: Search application built using semantics at a large
entertainment company

7

sponsors. MarkLogic also enabled the APA to run a
higher volume of content through their systems and
maintain higher quality, integrity, agility, and scalability
in step with the increasing size of their business. DBAs
were happy with the new system because there was
less infrastructure to maintain, and developers were
happy because development cycles became faster,
allowing them to focus more time working on new
features and functionality.

THE BENEFITS OF NOSQL
DOCUMENT DATABASES
One of the main reasons the organizations in the
preceding section chose to use NoSQL and semantics
was that they needed a more flexible, useful, and
descriptive model for their data that would allow
them to integrate data better and build smarter
applications—all at a much faster pace than they could
previously. The remainder of the paper discusses the
specific benefits of this new approach.

To start, we discuss the benefits of NoSQL document
databases. NoSQL databases fall into four distinct
types: document, graph, column, and key-value.
Among these types of NoSQL databases, document
databases are by far the most popular, and in this
section, we focus only on the benefits of document
databases since MarkLogic stores data as documents.
If you are interested in learning more about NoSQL in
general, download the eBook, Enterprise NoSQL for
Dummies.

FLEXIBILITY OF THE DOCUMENT MODEL
One of the main benefits of document databases is
that they use a flexible, schema-agnostic data model
that brings agility and richness when it comes to
modeling data and building applications. Rather than
normalizing data across tables in a relational model,
the document model keeps all of the data in JSON or
XML documents. JSON and XML documents provide

a more natural approach to modeling the variable and
complex data that today’s organizations work with, they
are more human-readable, and they more closely map
to the conceptual or business model of the data—the
real-world entities. For example, if modeling a financial
trade, a patient record, or a surgical procedure at a
hospital, a single document can contain the necessary
information.

{
 "hospital": "Johns Hopkins",
 "operationType": "Heart Transplant",
 "surgeon": "Dorothy Oz",
 "operationNumber": 13,
 "drugsAdministered": [
 { "drugName": "Minicillan",
 "drugManufacturer": "Drugs R Us",
 "doseSize": 200, "doseUOM": "mg" },
 { "drugName": "Maxicillan",
 "drugManufacturer": "Canada4Less",
 "doseSize": 400, "doseUOM": "mg" },
 { "drugName": "Minicillan",
 "drugManufacturer": "Drugs USA",
 "doseSize": 150, "doseUOM": "mg" }
]
}

Figure 9: Example of a JSON document representing a surgical
procedure at a hospital

A row in a table in a relational database can be roughly
compared to a single document, though documents are
not as rigid and can be used for both structured and
unstructured data. Each document has its own schema
of structure and attributes. That schema can easily
evolve, independently of other documents. If all of a
sudden a new data feed is identified that has a different
schema, the data can still be ingested and stored
without having to pre-define its structure or having to
adjust any of the existing documents.

Document databases have another benefit when the
data is consumed in applications—they do not have
an impedance mismatch problem. With relational
databases, there is an impedance mismatch between

 “ JSON and XML documents provide a more natural approach to modeling
the variable and complex data that today’s organizations work with.”

8

http://info.marklogic.com/nosql-for-dummies.html
http://info.marklogic.com/nosql-for-dummies.html

the objects that contain the data and code used in
application programming and the normalized rows and
columns in the database. This architecture eventually
leads to performance loss and more opportunities
for buggy code. With NoSQL, developers can simply
work with data as JSON, XML, or even rich objects
throughout the technology stack without having to
maintain complex transformations from the relational
model. This is a more straightforward approach and it
means developers can avoid the risks of developing
the wrong application because they can use a more
iterative approach to building a system that is more
resilient to changes later on.

THE IMPACT OF A BETTER APPROACH
Today, organizations are frequently managing data
across silos and they need a database better suited for
data integration. When it comes to data integration, the
flexibility of the document model is a huge advantage.
Rather than spending unnecessary time identifying and
profiling data and managing complex ETL processes,
a document database makes it possible to load data
as-is and perform any necessary transformations either
during the ingestion process or later on after it is loaded
into the database. Often, transformations are needed
to get data to conform to a certain schema. Other
times, certain metadata needs to be added to enrich a
document. And, these processes must often happen
without destroying the integrity of the original source
data. The document model makes it possible to do all
of these tasks faster and simpler than with a relational
database.

At one large healthcare company now using MarkLogic,
there was a data integration project involving over
140 human resources-related data feeds, consisting
primarily of complex, structured data such as payroll
data, employee evaluations, promotions, benefits
data, and more. That data needed to be ingested,
transformed, and then delivered in real-time to over 50
downstream systems. The project was estimated to

take over 40,000 hours of development and multiple
years using traditional relational database technology.
With MarkLogic, the company was surprised when
the project was completed successfully and the new
system put into production in less than a year. The
new system can handle the complex data ingestion
and complex output, and it is more resilient to future
changes. The company now relies on MarkLogic as
the data layer for all of their HR data, and at a reduced
cost compared to their previous system that involved a
myriad of data silos.

 “ A document database makes it possible to load data as-is and perform any
necessary transformations either during the ingestion process or later on
after it is loaded into the database.”

MARKLOGIC COMPARED TO OTHER
DOCUMENT DATABASES
Compared to other well-known document
databases, MarkLogic stands out for the
following key reasons:

• Multiple Data Formats – MarkLogic
provides native storage for JSON, XML, and
RDF (which we discuss next). In addition,
MarkLogic can also store large binaries (e.g.,
PDFs, images, videos). Most document
databases only store JSON.

• Built-in Search – MarkLogic has a Universal
“Ask Anything” Index for words, phrases,
structure, values, security, and more—and
even more indexes on top of that (range,
geospatial, and triple indexes). With other
databases, indexing capacity is limited, and
require another bolt-on solution for full-text
search.

• Enterprise Capabilities – MarkLogic has
100% ACID transactions. Most NoSQL
databases do not have ACID transactions,
and may lose data or end up with corrupt
data. In addition, MarkLogic also has
certified security and proven HA/DR.

9

THE ADDED BENEFITS OF
SEMANTICS
Document databases serve as great general purpose
databases, but there are still some things about data
modeling they are not optimized for. In this section,
we discuss how semantics is specifically optimized for
storing facts and relationships, and what this capability
means for data modeling. If you are interested in a
more in-depth overview of what semantics is, including
more examples of semantics in practice, grab a copy of
Semantics for Dummies.

A SIMPLE AND POWERFUL DATA MODEL
Graph databases have risen quickly in popularity in
recent years, and triple stores—where semantic data
is stored—are considered a type of graph database.
When data starts to take on a graph structure in
which entities (people, places, and things) and the
relationships between them are the most important
thing, it is better to use semantics.

Semantic facts and relationships are expressed with a
subject-predicate-object construction, and are known
as RDF triples (RDF stands for “Resource Description

Framework”). An example of a triple is “John lives in
London.” These triples are queried using a standard
language called SPARQL, which is a lot like SQL.

Using triples to describe facts and relationships is
both simple and powerful. As one expert puts it,
“Increasingly models are enterprise wide, and contain
a high degree of variability for which SQL is just too
cumbersome to handle well”… “RDF (and by extension
SPARQL) becomes more important as the data models
themselves become more complex, more associational,
and more heterogeneous, simply because the variety of
information will dominate over factors such as volume
or velocity.”9

Some of the unique advantages of semantics include
the following:

• Triples are universally understood and can be easily
searched and shared

• Triples connect together to form graphs that are
machine readable, and can even be used to infer
new facts

9 Cagle, Kurt. “Why SPARQL Is Poised To Set the World on Fire.” June 4, 2016.
<https://www.linkedin.com/pulse/why-sparql-poised-set-world-fire-kurt-cagle>

SEMANTICS IN PRACTICE
The British Standards Institution, or BSI,
publishes standards and provides standards-
related services for businesses around the
world. BSI developed an online application,
British Standards Online (BSOL), for searching
standards.

Unfortunately, traditional keyword searches were
unhelpful. For example, searching for “cardiac
catheter” brought back zero results. Google
was not helpful either, as a search for “cardiac
catheter manufacturing standards” only brought
back general links based on the keywords, not the specific, applicable standards.

Using MarkLogic, BSI built a new application incorporating semantics in order to make searching standards
better and faster. Semantics makes it possible to expand queries so that a user can just search for “cardiac
catheters” and then see results based on conceptual relationships. So, even though a document about
medical standards may not specifically mention “cardiac catheter,” it may mention “implantable devices” that
are semantically related to cardiac catheters.

Figure 10: Screenshot of BSI app

1 0

http://info.marklogic.com/semantics
https://www.linkedin.com/pulse/why-sparql-poised-set-world-fire-kurt-cagle

• Common standards are defined by W3C for RDF
triples and the query language, SPARQL

• Triple stores can scale to hundreds of billions of
facts and relationships

• Triple stores can leverage ontologies to organize
and categorize data (ontologies are like taxonomies,
but are richer and more useful)

THE IMPACT OF A BETTER APPROACH
MANAGING DATA VARIABILITY
The unique features of triples and triple stores are
generally put to use by organizations in two ways,
all of which are aimed at providing context for data.
One approach is to use triples to describe an almost
limitless number of facts and relationships about an
organization, a domain, or the world at large. This in
turn can be used to enhance search.

Having a standard approach to defining facts and
relationships helps manage data variability. There is
variability in how organizations define entities (e.g.,
different column names for the same thing, or the
same column name for different things). There is also
variability in natural language (e.g., the word “sub” may
refer to a naval submarine, or to a Subway* sandwich
depending on the context).

Rather than relying on the relatively abstract and
complex ways in which relationships are defined
in relational databases, triples describe facts and
relationships explicitly in the database. This is really
beneficial for data integration because triples can
connect data more easily than through joins or
complex transformations. For example, a triple could
say the entity cust123 is the same as cus_id_456
or is related to that cus_id_456 in a certain way.
Relationships such as class and property relationships
can be captured, going beyond what a traditional
physical ER diagram shows.

With these features, semantics provides a great
data model for expanding searches. For example, it
is possible to take a search input, such as “cardiac
catheter” and expand that search to include results
that have anything to do with “implantable devices”
based on the semantic taxonomy or ontology. See the
call-out-box above for more information on this type of
search expansion.

MANAGING METADATA AND REFERENCE DATA
Triples can be used as metadata or reference data
to describe data lineage (provenance and on-going
history), data retention and temporality, security,
relevance, or a wide variety of other facts about data.
Rather than having to go elsewhere in search of the
context for data, that context can now be connected
to the data in the database. Returning to the earlier
example of a database with various sizes for parts, it
is possible to use triples to define the units (cm), the
tolerance (h17, 0-1.20mm), that John measured it, that
the measurement was taken on December 1, 2015, and
that only employees in the manufacturing division can
see the information.

This approach is superior to the traditional relational
approach in which metadata is usually non-existent
or difficult to manage, and also has benefits when
compared to a solely document-oriented approach.
While metadata and reference data can be managed in
JSON or XML documents, the document model does
not have the ability to leverage the graph structure
and machine readability of triples. These benefits,
combined with the ability to do semantic inference and
describe complex class and property relationships,
make semantics ideal for storing metadata. When the
data and metadata can be kept together in the same
database, integrating data from disparate silos is a
much smoother, less error-prone process.

 “ Rather than relying on the relatively abstract and complex ways in which
relationships are defined in relational databases, triples describe facts and
relationships explicitly in the database.”

1 1

THE MULTI-MODEL APPROACH
COMBINING NOSQL AND
SEMANTICS
There is no single data model that works well for every
use case. By necessity, organizations will require more
than one model to support different types of data
and workloads. The idea of using multiple models in
combination is known as “polyglot persistence.”

We take the position that polyglot persistence is best
achieved by storing many kinds of data in one place
rather that storing many types of data in many places,
an approach that requires bolting together various
different technologies. Other database vendors are
coming to the same conclusion; and, as one analyst
states, the “multi-model approach is the future of
NoSQL.”10

Multi-model databases allow organizations to get the
benefits of each model in a single platform, and get
additional unique benefits that are only possible when
both models exist in the same database. Currently,
MarkLogic is the only enterprise-grade, multi-model
database that combines a document database with
semantics. In this section, we discuss the benefits of
MarkLogic’s approach in more depth, but here is a
quick summary:

• Document database (JSON, XML)
 - Flexibility and agility
 - Massive scale

• Triple Store (RDF)
 - Designed for entities and relationships
 - Designed to provide context

• Documents & Triples (JSON, XML, RDF)
 - Benefits of each of the above, and...
 - One single platform
 - Even more flexible data modeling
 - Improved query capabilities

10 Aslett, Matt. Toward a converged data platform, part one: SQL, NoSQL
Databases and data grid/cache. 451 Research. Dec. 3, 2015.

SIMPLICITY OF A UNIFIED DATABASE
By combining a NoSQL document database and triple
store in MarkLogic, organizations get the benefits
of both models without having to maintain separate
systems. This alone is a huge benefit. It means
drastically reducing the footprint for backup and
recovery, development and testing, and search. It also
means only having to maintain one security model and
has implications for the size of the hardware footprint as
well. So, rather than spending the majority of time and
resources managing legacy data silos, organizations
can focus on value-adding activities.

MORE FLEXIBILITY, MORE POWER
With MarkLogic, organizations can store data as
documents or as triples, all depending on the use case.
For example, one common pattern already discussed
is using triples to expand document searches with
semantic taxonomies or ontologies.

When deciding which data type to use, it is easiest to
think of JSON as the best data type for objects (e.g.,
customer, stock trade), XML for text (e.g., blog post,
news article), and RDF triples for facts and relationships

Figure 11: MarkLogic is an enterprise-grade, multi-model database that
makes it possible to store data, documents, and triples all in a single

unified platform

DOCUMENTS TRIPLESDATA

 “ Polyglot persistence is best achieved by storing many kinds of data in one
place rather that storing many types of data in many places.”

1 2

(e.g., J.J. Abrams directed Star Wars, a story by George
Lucas). Table 1 above has more detail on each data
model. With this optionality, organizations can choose
the right tool for the job rather than having to deal with
the cumbersome constraints that relational databases
apply to the increasing volume of multi-dimensional
data.

IMPROVED QUERY CAPABILITIES
With a better data model, it is possible to ask harder
questions of the data (and usually with less code).
There are new kinds of queries that are possible with
MarkLogic that are not possible with SQL, and other
queries can be written more simply than with SQL.

MarkLogic’s document model provides some unique
query capabilities such as being able to search the
free text within documents and rank data by relevance.
MarkLogic’s triple store provides the ability to navigate
a graph of relationships and do semantic inference.
With inferencing, new triples can be added to the graph
and then leveraged based on how existing triples are
defined and related.

Combining both models together in MarkLogic opens
up the door for more types of queries. MarkLogic
provides APIs to mix SPARQL queries with traditional
MarkLogic document search queries, making it possible
to expand a document search using graphs, enhance
a graph search by linking to documents, and restrict
document searches using triples metadata. With more
options for how to ask questions of the data, the better
the answers will be.

GET GOING WITH A BETTER
DATA MODEL
This paper is only scratching the surface of the benefits
of NoSQL and semantics and what is possible when
starting with a better data model. Making the move
from the old world of data modeling to the new may
seem daunting at first, but there are many leading
organizations that have already adopted the multi-
model approach and are seeing the benefits. Here, we
provide some links to more information so that you can
get the process started.

JSON XML RDF JSON/XML + RDF

Usage Ideal for structured data
that is stored as objects

Ideal for structured and
unstructured data or text

Ideal for facts and
relationships

Ideal for systems of data,
text, and relationships

Description • Schema-agnostic
• Query with JavaScript
• Compact and fast to

parse
• Six kinds of values:

objects, arrays, floats,
strings, booleans,
nulls

• Avoids namespaces,
comments and
attributes

• Common data format
for the web

• Schema-agnostic
• Query with XQuery
• Can store objects,

sets, and many data
types such as dates,
durations, integers,
and more

• Uses namespaces
(for embedding object
types), comments,
and attributes (for
adding metadata)

• More maturity than
JSON as a data
model

• Define entities and
relationships

• Atomic structure
(cannot be broken
down further)

• Uses universal
standards for data
and querying (RDF
and SPARQL

• Used for reference
data, metadata,
provenance

• Documents can
contain triples

• Triples can annotate
documents

• Graphs of triples can
contain documents

• Enhanced querying:
 - Expand a

document search
using graphs

 - Enhance graph
search by linking
to documents

 - Restrict document
search using
triples metadata

Table 1: Usage and descriptions of different data models in MarkLogic

1 3

© 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. This technology is protected by U.S. Patent No. 7,127,469B2, U.S. Patent

No. 7,171,404B2, U.S. Patent No. 7,756,858 B2, and U.S. Patent No 7,962,474 B2. MarkLogic is a trademark or registered trademark of MarkLogic

Corporation in the United States and/or other countries. All other trademarks mentioned are the property of their respective owners.

MARKLOGIC CORPORATION
999 Skyway Road, Suite 200 San Carlos, CA 94070

+1 650 655 2300 | +1 877 992 8885 | www.marklogic.com | sales@marklogic.com

MORE INFORMATION
Enterprise NoSQL for Dummies
po.st/nosqlfordummies
Read the book to get a good general overview of the
different types of NoSQL databases and what to look
for when evaluating them.

Semantics for Dummies
po.st/semantics
Get a deeper dive into the world of semantics, learning
about the various use cases and the top ten things to
look out for when considering semantics.

Customer Presentation
po.st/multimodeldataintegration
Hear how one customer analyzes data models, and
how his large organization is applying NoSQL and
semantics.

Modern Approach to Data Modeling
po.st/modeling
Watch this presentation by MarkLogic engineers that
goes into depth about multi-model data integration in
the real world.

 “ With a multi-model approach, organizations can choose the right tool for the
job rather than having to deal with the cumbersome constraints that relational
databases apply to the increasing volume of multi-dimensional data.”

http://www.marklogic.com
mailto:sales%40marklogic.com?subject=
http://po.st/nosqlfordummies
http://po.st/semantics
http://po.st/multimodeldataintegration
http://po.st/modeling

	Introduction
	Traditional Data Modeling Is Inadequate
	What We Were Promised
	What We Got
	Now We’re Paying the Price

	Specific Problems With Relational Modeling
	Difficulties Modeling Entities and Relationships
	Difficulties Maintaining Context

	Leading Organizations Adopting New Approaches
	Managing Programs Metadata for the BBC’s iPlayer Streaming Service
	Building a Semantic Metadata Hub at a Leading Entertainment Company
	Intelligent Analytics for Academic Publishing at the APA

	The Benefits of NoSQL Document Databases
	Flexibility of the Document Model
	The Impact of a Better Approach

	The Added Benefits of Semantics
	A Simple and Powerful Data Model
	The Impact of a Better Approach

	The Multi-Model Approach Combining NoSQL and Semantics
	Simplicity of a Unified Database
	More Flexibility, More Power
	Improved Query Capabilities

	Get Going With a Better Data Model
	More Information

