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Traditional data modeling is inadequate. Today, organizations are constrained by relational 

technology and they need a better approach to data modeling in order to integrate data faster 

and build smarter applications. For that reason, organizations are now choosing a multi-model 

approach using NoSQL and semantics.



CURRENT STATE ASSESSMENT 
Is your organization in need of change, or do you think you are doing all right with your data? The answers to the 
questions below provide a baseline assessment to address that question. The more “YES” answers, the more likely 
your current database(s) are not meeting your organization’s needs.

YES NO

BUSINESS 
QUESTIONS

1. Is there data that is important to your organization that is not in a 
database?

✔ û

2. Are there multiple databases with related data, but no integrated 
view of that data?

✔ û

3. Are there numerous data sets spun off from core systems and no 
longer centrally managed or governed?

✔ û

4. Are there large IT projects that have been behind budget or failed to 
launch due to data integration challenges?

✔ û

5. Are there database schemas so complicated that no one wants to 
touch them anymore?

✔ û

TECHNICAL 
QUESTIONS

6. Does data modeling ever slow down or hinder the process of 
application development?

✔ û

7. Are there relational tables in which column names were changed or 
been assigned new meaning “just to make it work”?

✔ û

8. Are there frequent database schema changes each month, and are 
some of the changes unsuccessful?

✔ û

9. Is important metadata or reference data stored outside of the 
database, in an Excel spreadsheet or some other place?

✔ û

10.  Are there ever performance problems or bugs that may have   
resulted from complicated middleware?

✔ û
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INTRODUCTION
Data modeling is crucial for every organization. Data 
models define the details of how information is stored, 
documenting real life people, places, and things 
and how they relate to one another. For example, 
a company has customers, and customers have 
purchases. How these entities and relationships are 
modeled forms the basis for using and sharing data and 
directs how organizations build applications. At a high 
level, data models represent how organizations think 
about the world in which they operate.

Unfortunately, the traditional approach to data 
modeling is inadequate. The process for data modeling 
involves developing a conceptual model of entities 
and relationships based on the domain of interest, 
translating that into a logical model, and then further 
translating that into a physical model that can be 
implemented in the database. This approach, known as 
entity-relationship modeling (“ER modeling”), has been 
a standard since it was first proposed in 1976. 

But in practice, database designers ignore conceptual 
modeling. According to one study, there was not a 
single instance of conceptual ER modeling among the 
Fortune 100 companies surveyed.1 Why is that? The 
problem is that the world has too much complexity 
to fit into rows and columns of a relational database. 
Looking at an ER diagram for a relational database, 
it is not possible to discern much about the business 
or the logical whole of what is being described. There 
is a disconnect and the physical models just end up 
as convoluted, poor depictions of the world they are 
meant to portray. 

Organizations make valiant efforts to build and maintain 
foolproof relational databases perfectly connected 
together. But eventually a change is required—a new 
data source comes around, a different question is 
asked, or data must be integrated into a new system. 
Relational databases show their weaknesses when 
these events occur, but such events are now common. 
For the past 30 years, experts have tried to make 
relational databases work, but today, data modeling 
remains an unsolved problem.

1 M. L. Brodie and J. T. Liu. “The power and limits of relational technology in the 
age of information ecosystems.” Keynote at On The Move Federated Conferences, 
2010.

To integrate data faster and building smarter 
applications, organizations are adopting an alternative 
multi-model approach using NoSQL and semantics. 
NoSQL and semantics provides a more flexible, 
descriptive, and useful model. In the words of one 
MarkLogic customer, NoSQL and semantics “removes 
the shackles of relational technology.”2 

Currently, there are many other new databases on 
the market, but MarkLogic® is the only enterprise-
grade, multi-model database that combines all of 
the benefits of a NoSQL document database and 
semantics in a single platform. It is for this reason that 
leading organizations such as the British Broadcasting 
Company (BBC), NBCUniversal, Broadridge Financial 
Solutions, Amgen, and others are rethinking data 
modeling with a multi-model approach using 
MarkLogic.3

2 Watch the interview with Paolo Pelizzoli, SVP and Global Head of Archi-
tecture at Broadridge Financial Solutions, online at https://www.youtube.com/
watch?v=TB1tLrM_z1k.

3 National Commission on Terrorist Attacks on the United States, The 9/11 
Commission Report: Final Report of the National Commission on Terrorist Attacks 
upon the United States: Official Government Edition (Washington, DC: U.S. G.P.O. 
2004) p.401,416. <https://www.gpo.gov/fdsys/pkg/GPO-911REPORT/pdf/GPO-
911REPORT.pdf>

THE NEED FOR A BETTER APPROACH 
Data integration is one of the most pressing 
challenges for organizations today. It matters 
to banks that need better reporting due to 
increased oversight, companies undergoing 
mergers and acquisitions, and governments that 
must improve national security. 

Regarding national security, the 9/11 
Commission report stated the importance 
of data integration, stating that, “A ‘smart’ 
government would integrate all sources of 
information to see the enemy as a whole.”3 
Unfortunately, traditional database design does 
not capture enough information to enable data 
integration—it falls short of even capturing the 
kind of information that would be valuable for 
data integration. To integrate data faster and 
easier, organizations need a different kind of 
database.

1
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TRADITIONAL DATA MODELING 
IS INADEQUATE
WHAT WE WERE PROMISED
In a famous computer science paper published in 
1976, Peter Chen put forward the idea of capturing 
information about the real world as entities and 
relationships.1 The new approach, called ER modeling, 
was intended to unify multiple storage and transaction 
models to better represent the real world. It soon 
became a standard for data modeling. 

In ER modeling, database designers look at the most 
import entities (e.g., objects with a physical existence 
such as an employee, car, or house; or an object with 
a conceptual existence such as a company or job). 
Next, they distill out the attributes (e.g. the name, age, 
address, and salary of the employee). This information 
then guides implementation of the physical database. 
This process involves three different diagrammatic 
models, described below.

CONCEPTUAL DATA MODEL
The conceptual data model identifies the general 
entities and relationships at a high level. It uses 
non-technical terms that executives and managers 
understand, and serves as a point of reference for the 
technical specifications that follow.

Figure 1: Example of a simple conceptual data model  
(Source: http://www.1keydata.com/)

LOGICAL DATA MODEL
The logical data model is more detailed than the 
conceptual data model. It standardizes people, places, 
things, and relationships—and the rules and events 
among them. It does not go so far as to specify the 

1 P. Chen. The entity-relationship model - toward a unified view of data. ACM 
Transactions on Database Systems, 1(1):9–36, 1976. <http://www.inf.unibz.it/~nutt/
IDBs1011/IDBPapers/chen-ER-TODS-76.pdf>

technology for implementation, but it does anticipate 
the physical model that follows. It includes a normalized 
view of the entities (tables), attributes (columns/fields) 
and relationships (keys).
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Figure 2: Example of a simple logical data model  
(Source: http://www.1keydata.com/)

PHYSICAL DATA MODEL
The physical model is the closest representation to 
how the data is actually stored in the database. It is 
detailed, technical, and technology (and even vendor) 
dependent. It includes the actual table and column 
names, and takes into consideration performance 
goals, indexes, constraint definitions, data distribution, 
triggers, stored procedures, and more.
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Figure 3: Example of a simple physical data model  
(Source: http://www.1keydata.com/)
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WHAT WE GOT
Unfortunately, when put into practice, the conceptual 
ER diagrams meant to describe entities and 
relationships get immediately supplanted by physical 
models designed according to the hard constraints of 
relational databases. The conceptual models are often 
not even produced. Database designers jump straight 
to implementing physical models, without building the 
foundation to guide their development. 

In one study, researchers could not find a single 
instance of conceptual ER modeling among the ten 
Fortune 100 companies they surveyed, and they 
also found significant problems with data modeling 
in general. They found that, “A typical Fortune 100 
company has about 10 thousand different information 
systems, a typical relational database is made of 
over 100 tables, each containing between 50 to 200 
attributes. Formalized conceptual models, as well as 
the theory developed around normalization, are not 
used. Physical modeling is frequently delayed until 
performance problems arise.”2 Another database expert 
reports that, “[the database design] for 50 percent of 
applications is substantially flawed.”3

Why are database designers not doing proper data 
modeling? 

The main problem is that the world has too much 
complexity, and businesses operate faster than IT can 
keep up. Conceptual models that depict the real world 
do not translate well into the physical models that DBAs 
and architects use to build their relational databases. 
Database designers focus enormous amounts of time 
on the physical models, designing ways to persist 
data in relational databases in ways that relational 
databases can handle. This traditional approach results 
in a rigid system of tables connected together using 
primary keys, foreign keys, and joins. Unfortunately, it 

2 M. L. Brodie and J. T. Liu, 2010.

3 Roberto V. Zicari, “How good is UML for Database Design? Interview with 
Michael Blaha.” ODBMS.org, July 25, 2011. <http://www.odbms.org/blog/2011/07/
how-good-is-uml-for-database-design-interview-with-michael-blaha/>

is a poor representation of the world it was designed 
to portray. It is not ideal for application development 
due to the problem of impedance mismatch. And, it is 
also problematic when a change is required, a new data 
source comes along, or different data sources need to 
be integrated together from silos—events that are all 
quite common today. 

NOW WE’RE PAYING THE PRICE
What typically happens in most organizations is 
that IT lags behind the pace of the business. With 
the database architecture, tables and columns start 
accumulating in the database until no one knows quite 
how the data model relates to the actual business 
entities, and no one can be sure how a change in 
one place may affect other aspects of the model. The 
database becomes overly complex, difficult to reason 
through, virtually impossible to change, and no one 
wants to touch it anymore.

Figure 4: Snapshot of a complex relational model  
(Source: http://www.plandora.org/docs/mer.png) 

Most organizations do not have just one schema, 
either—they have multiple schemas across various 
silos. Additional schemas often appear as a result 
of a merger, acquisition, or integrating a new data 
provider. These schemas accumulate and grow over 

 “ The main problem is that the world has too much complexity, and 
businesses operate faster than IT can keep up.”
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time, creating layers upon layers of complexity. So, it 
becomes more expedient to just spin off a subset of 
the data to a new data mart needed for a particular 
application or report. Of course, this only results in 
more copies of the data floating around, more security 
and data governance challenges, and more problems 
integrating data and building applications.

To integrate data from such disparate silos, the 
organization must go through the painful process of 
determining the similarities between attributes, usually 
without any associated metadata. At one large Swedish 
bank, for example, it was discovered that across their 
many databases, there were 31 different definitions 
for “nominal amount”—and no additional information 
to indicate what the data actually represented. The 
confusion with just that one important term results in 
many trickle-down costs and risks. Now imagine that 
problem happening with hundreds or thousands of 
terms.

These problems are not just headaches for DBAs. They 
create serious risks for the entire organization, higher 
costs, and longer project timelines. One study reports 
that, “40% of the cost associated with information 
systems is due to data integration problems.”4 And, 
in 2015 alone, organizations spent $5 billion on data 
integration software.5 

Over the past 30 years, experts have tried to make 
relational databases work, but traditional data modeling 
is inadequate. The fundamental mismatch between 
relational databases and the increasingly varied data 
that today’s organizations handle will only become 
more problematic if left unchanged. Forrester Research 
sums up the problem: “As data structures get more 
complex and data volume grows, traditional relational 
databases—and their need for a pre-defined schema 
are falling short.”6

4 M. L. Brodie and J. T. Liu, 2010.

5 Gartner. Forecast: Enterprise Software Markets, Worldwide, 2011-2018, 4Q14. 
2014. <https://www.gartner.com/doc/2944023/forecast-enterprise-software-
markets-worldwide>; Includes: Data Integration Tools, Data Quality Tools, and Other 
Data Integration Software.

6 The Forrester Wave™: NoSQL Document Databases, Q3 2014; An Evaluation 
Of Four Enterprise-Class NoSQL Document Databases Vendors. Noel Yuhanna with 
Leslie Owens, Emily Jedinak, and Abigail Komlenic.

SPECIFIC PROBLEMS WITH 
RELATIONAL MODELING
In this section, we elaborate on the specific challenges 
that make relational databases ill-equipped for modern 
day data modeling. If you are interested in a broader 
discussion covering all of the key reasons why relational 
databases are not working for today’s data, read 
the white paper Beyond Relational, which discusses 
other aspects such as application development and 
scalability.

DIFFICULTIES MODELING ENTITIES AND 
RELATIONSHIPS 
When looking at an ER diagram for a relational 
database, it is not possible to discern much about the 
real life business model or the logical whole of what is 
being described. That data model does not translate 
well into today’s world of dynamic, complex, connected 
relationships. 

When doing relational modeling, the process typically 
involves the following steps:

1. Give each attribute its own field
2. Group attributes into tables
3. Assign one primary key to each table
4. Eliminate duplicate attributes

The problem is that relationships between entities 
are defined only inherently via the rows and columns 
in tables, or by using pointers between tables based 
on foreign key relationships and constraints. Some 
types of relationships such as associations or inherited 
relationships are implicit, documented and governed 
outside the database, or just ignored. The more 
complex the information is, the more rows, columns, 
and pointers. This gets overly burdensome to model, 
and even more difficult to query.

As a business changes, the schema must also be 
updated. Unfortunately, making changes to relational 
schemas is usually time consuming and expensive. 
For one MarkLogic customer, “Even a simple change 
like adding or replacing a column in a table might be a 

 “ 40% of the cost associated with information systems is due to data 
integration problems.”
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million dollar task.”7 The process of managing change 
with relational databases usually involves building 
out separate join tables to capture many-to-many 
relationship and doing a lot of defensive programming 
to avoid problems downstream. Such manual tasks are 
error prone and do not provide a long term solution for 
managing change. 

Relational databases also have no universally accepted 
standards for modeling and querying people, places, 
and things. Each attribute in a relational database 
stands on its own, and every DBA models it differently. 
Furthermore, because of data variety, database 
designers are often working with tables that have been 
populated with rows and rows of NULL cells (“sparse 
data”) or with column names described with generic 
VARCHAR data types that are part of tables with 
enigmatic names that only a few people understand. 
These issues destroy cohesion and cause problems for 
normalization and querying. Ultimately, the end result of 
relational shortcomings is that database designers are 
left to convey, usually externally, how to find meaning 
and join distinct artifacts into a logical whole. 

DIFFICULTIES MAINTAINING CONTEXT
Relational databases provide a mathematically 
consistent view of the data, but the valuable context 
around the data—the semantics of the data—is lost. 

7 According to one customer at a leading Fortune 100 technology company, the 
task of adding a column could take them up to a year and cost over a million dol-
lars. For other more complex data modeling projects involving master data manage-
ment, even lengthier timelines of over five years have been reported.

This was one of the main points in Peter Chen’s paper 
on ER modeling, which stated that, “The relational 
model is based on relational theory and can achieve 
a high degree of data independence, but it may lose 
some important semantic information about the real 
world.”8

As an example, consider a database that has a table 
of parts with a column named “Size,” and a column 
value of “42” in one of the rows in that column. But, 
where is the contextual information: What are the units 
of “42”? What is the tolerance? Who measured it? Is it 
an estimate? When was it measured? Who can see this 
column? 

Things are even more problematic when handling data 
that is more qualitative, less structured, or has class 
or property relationships that must be accounted 
for. Consider a table with a column name labeled 
“Customer.” What does that label mean? How are 
customers related to other things that are important to 
the organization? Is this group of customers a subclass 
of a broader group of customers? Which systems can 
generate customers? How are customers represented 
to the applications? How many customers does the 
organization know about? Which customers do not 
adhere to the business rules? 

Unfortunately, the context of the data is not in 
the database. If it does exist, it may be stored in 

8 P. Chen, 1976.
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Figure 5: Relational databases are not designed to store context
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SharePoint*, a Microsoft Excel* spreadsheet, or an ER 
diagram printed out a few months ago and hung on a 
DBA’s office wall—everywhere except for the database 
where the data is stored. Making sense of the data 
within one database is difficult. Across data silos it 
can be impossible. This makes getting and reconciling 
metadata and reference data a brittle and expensive 
process.

LEADING ORGANIZATIONS 
ADOPTING NEW APPROACHES
Relational databases provide robust technology and 
there are many reasons why they are the most used 
type of database. But it is a mistake to think that 
relational databases should be used to do things they 
were not designed for. Driven by the need to change, 
organizations today are fundamentally rethinking their 
approach, and MarkLogic provides an alternative 
using NoSQL and semantics that solves many of 
the challenges with traditional data modeling. In this 
section, we quickly highlight some of the successes 
that organizations have had in transitioning to a new 
approach with MarkLogic.

MANAGING PROGRAMS METADATA FOR THE 
BBC’S iPLAYER STREAMING SERVICE
The BBC was the first global media company to 
embrace using NoSQL and semantics for a mission-
critical application at scale. For the 2012 Olympics, 
the BBC moved from a relational database to a new 
architecture built using NoSQL and semantics in 
order to automate the aggregation, publishing, and 
repurposing of content. 

Since then, the BBC has expanded its use of NoSQL 
and semantics. One example is with the iPlayer TV 
streaming service, which was relaunched in 2014 
using MarkLogic as the main component for storing 
and delivering metadata about the BBC’s programs. 
They made the change because their legacy system, 
based heavily on MySQL and Memcached, showed 

performance and reliability problems. And, the whole 
end-to-end process for making new content available 
on iPlayer was too slow, often taking days. 

Figure 6: BBC iPlayer TV streaming service

With the increasing volumes of users and need for a 
simpler and more reliable system, the BBC knew they 
needed a change. After struggling to solve the problem 
with relational technology and spending a lengthy 
period of time prototyping and testing alternatives with 
major database vendors, the BBC chose MarkLogic. 
With MarkLogic, the new iPlayer system handled over 
3 billion program requests in the first year. Performance 
increased, with SQL queries that used to take 20 
seconds only taking 20 milliseconds with MarkLogic. 
And, the end-to-end process for making content 
available dropped from days to minutes. The Lead 
Technical Architect at the BBC stated that, “MarkLogic 
makes things so simple that the architects struggle to 
get their head around it!”

BUILDING A SEMANTIC METADATA HUB AT A 
LEADING ENTERTAINMENT COMPANY
A large entertainment company uses MarkLogic to 
manage hundreds of thousands of product titles, 
characters, distribution rights, and technical information 
that are all vitally important. Previously, the data was 
held in disconnected information silos, resulting in 
data quality issues, inconsistent governance, and an 
inability to re-use data efficiently. They even had to 
employ couriers to hand-carry physical assets between 
buildings.

 “ With MarkLogic, the new iPlayer system handled over 3 billion program 
requests in the first year. Performance increased, with SQL queries that used 
to take 20 seconds only taking 20 milliseconds with MarkLogic.”
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The solution to their problem was to establish a 
centralized, semantic metadata hub using MarkLogic. 
The hub makes it possible to store and access all of 
the organization’s metadata about its assets in one 
place, enabling rapid response to emerging business 
challenges and changes in the competitive landscape. 

The hub uses MarkLogic to store and search the data 
and also Smartlogic*, a MarkLogic partner, for 
classification, publishing, taxonomy and ontology 
management, and semantic enrichment functions. The 
hub works by ingesting data from multiple silos and 
then providing a natural language search interface to 
query the data, in addition to providing the data to 
downstream systems. 

Because the data model is driven by NoSQL and 
semantics, users can leverage the relationships in 
the data. For example, it is easy to see how a movie 
had a certain star appearing in it, that she played a 
specific character in that movie, that the character 
was from a specific place, and that the movie was 
animated. A relational database, by contrast, would 
have difficulty managing all of these relationships, and 
the costs would be prohibitive. The organization was 
also able to create a simpler information architecture 
since MarkLogic combines a database, search, and 
application services in one platform. With alternative 

approaches, the organization would have needed to 
integrate at least three different technologies to achieve 
the same level of functionality.

INTELLIGENT ANALYTICS FOR ACADEMIC 
PUBLISHING AT THE APA
The American Psychological Association (APA) gets 
over 70 percent of its revenue from publishing. Their 
“first to information” advantage is crucial. But they 
had problems with their large database of 57 million 
articles, books, journals, dissertations, videos, tests, 
measures, etc.—to be accessed by over 150,000 users. 
The APA’s legacy solution based on Oracle and Lucene/
Solr (a relational database and a search engine) showed 
inconsistent search results, a poor user experience, 
and slow content turnaround. It was cumbersome to 
manage the large database with millions of rows. And, 
although highly structured, the data was not structured 
in a way that was suitable for relational databases. The 
APA also had unnecessary costs due to having too 
many servers and too many developers focused on 
maintaining the legacy system.

The APA transitioned to MarkLogic to manage their 
data pipeline. This simplified their architecture, as 
MarkLogic is a database with built-in search. They also 
took the next step to enrich their data using semantics 
so that their users can explore data and analyze 
relationships between authors, subjects, journals, and 

Figure 8: Visualizations of APA data using semantics 

 “ With alternative approaches, the organization would have needed to 
integrate at least three different technologies to achieve the same level of 
functionality.”

Figure 7: Search application built using semantics at a large 
entertainment company
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sponsors. MarkLogic also enabled the APA to run a 
higher volume of content through their systems and 
maintain higher quality, integrity, agility, and scalability 
in step with the increasing size of their business. DBAs 
were happy with the new system because there was 
less infrastructure to maintain, and developers were 
happy because development cycles became faster, 
allowing them to focus more time working on new 
features and functionality.

THE BENEFITS OF NOSQL 
DOCUMENT DATABASES
One of the main reasons the organizations in the 
preceding section chose to use NoSQL and semantics 
was that they needed a more flexible, useful, and 
descriptive model for their data that would allow 
them to integrate data better and build smarter 
applications—all at a much faster pace than they could 
previously. The remainder of the paper discusses the 
specific benefits of this new approach.

To start, we discuss the benefits of NoSQL document 
databases. NoSQL databases fall into four distinct 
types: document, graph, column, and key-value. 
Among these types of NoSQL databases, document 
databases are by far the most popular, and in this 
section, we focus only on the benefits of document 
databases since MarkLogic stores data as documents. 
If you are interested in learning more about NoSQL in 
general, download the eBook, Enterprise NoSQL for 
Dummies. 

FLEXIBILITY OF THE DOCUMENT MODEL
One of the main benefits of document databases is 
that they use a flexible, schema-agnostic data model 
that brings agility and richness when it comes to 
modeling data and building applications. Rather than 
normalizing data across tables in a relational model, 
the document model keeps all of the data in JSON or 
XML documents. JSON and XML documents provide 

a more natural approach to modeling the variable and 
complex data that today’s organizations work with, they 
are more human-readable, and they more closely map 
to the conceptual or business model of the data—the 
real-world entities. For example, if modeling a financial 
trade, a patient record, or a surgical procedure at a 
hospital, a single document can contain the necessary 
information.

{
  "hospital": "Johns Hopkins",
  "operationType": "Heart Transplant",
  "surgeon": "Dorothy Oz",
  "operationNumber": 13,
  "drugsAdministered": [
    { "drugName": "Minicillan", 
      "drugManufacturer": "Drugs R Us", 
      "doseSize": 200, "doseUOM": "mg" },
    { "drugName": "Maxicillan", 
      "drugManufacturer": "Canada4Less", 
      "doseSize": 400, "doseUOM": "mg" },
    { "drugName": "Minicillan", 
      "drugManufacturer": "Drugs USA", 
      "doseSize": 150, "doseUOM": "mg" }
  ]
}

Figure 9: Example of a JSON document representing a surgical 
procedure at a hospital

A row in a table in a relational database can be roughly 
compared to a single document, though documents are 
not as rigid and can be used for both structured and 
unstructured data. Each document has its own schema 
of structure and attributes. That schema can easily 
evolve, independently of other documents. If all of a 
sudden a new data feed is identified that has a different 
schema, the data can still be ingested and stored 
without having to pre-define its structure or having to 
adjust any of the existing documents. 

Document databases have another benefit when the 
data is consumed in applications—they do not have 
an impedance mismatch problem. With relational 
databases, there is an impedance mismatch between 

 “ JSON and XML documents provide a more natural approach to modeling 
the variable and complex data that today’s organizations work with.”
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the objects that contain the data and code used in 
application programming and the normalized rows and 
columns in the database. This architecture eventually 
leads to performance loss and more opportunities 
for buggy code. With NoSQL, developers can simply 
work with data as JSON, XML, or even rich objects 
throughout the technology stack without having to 
maintain complex transformations from the relational 
model. This is a more straightforward approach and it 
means developers can avoid the risks of developing 
the wrong application because they can use a more 
iterative approach to building a system that is more 
resilient to changes later on.

THE IMPACT OF A BETTER APPROACH
Today, organizations are frequently managing data 
across silos and they need a database better suited for 
data integration. When it comes to data integration, the 
flexibility of the document model is a huge advantage. 
Rather than spending unnecessary time identifying and 
profiling data and managing complex ETL processes, 
a document database makes it possible to load data 
as-is and perform any necessary transformations either 
during the ingestion process or later on after it is loaded 
into the database. Often, transformations are needed 
to get data to conform to a certain schema. Other 
times, certain metadata needs to be added to enrich a 
document. And, these processes must often happen 
without destroying the integrity of the original source 
data. The document model makes it possible to do all 
of these tasks faster and simpler than with a relational 
database. 

At one large healthcare company now using MarkLogic, 
there was a data integration project involving over 
140 human resources-related data feeds, consisting 
primarily of complex, structured data such as payroll 
data, employee evaluations, promotions, benefits 
data, and more. That data needed to be ingested, 
transformed, and then delivered in real-time to over 50 
downstream systems. The project was estimated to 

take over 40,000 hours of development and multiple 
years using traditional relational database technology. 
With MarkLogic, the company was surprised when 
the project was completed successfully and the new 
system put into production in less than a year. The 
new system can handle the complex data ingestion 
and complex output, and it is more resilient to future 
changes. The company now relies on MarkLogic as 
the data layer for all of their HR data, and at a reduced 
cost compared to their previous system that involved a 
myriad of data silos.

 “ A document database makes it possible to load data as-is and perform any 
necessary transformations either during the ingestion process or later on 
after it is loaded into the database.”

MARKLOGIC COMPARED TO OTHER 
DOCUMENT DATABASES
Compared to other well-known document 
databases, MarkLogic stands out for the 
following key reasons: 

• Multiple Data Formats – MarkLogic 
provides native storage for JSON, XML, and 
RDF (which we discuss next). In addition, 
MarkLogic can also store large binaries (e.g., 
PDFs, images, videos). Most document 
databases only store JSON.

• Built-in Search – MarkLogic has a Universal 
“Ask Anything” Index for words, phrases, 
structure, values, security, and more—and 
even more indexes on top of that (range, 
geospatial, and triple indexes). With other 
databases, indexing capacity is limited, and 
require another bolt-on solution for full-text 
search.

• Enterprise Capabilities – MarkLogic has 
100% ACID transactions. Most NoSQL 
databases do not have ACID transactions, 
and may lose data or end up with corrupt 
data. In addition, MarkLogic also has 
certified security and proven HA/DR.
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THE ADDED BENEFITS OF 
SEMANTICS
Document databases serve as great general purpose 
databases, but there are still some things about data 
modeling they are not optimized for. In this section, 
we discuss how semantics is specifically optimized for 
storing facts and relationships, and what this capability 
means for data modeling. If you are interested in a 
more in-depth overview of what semantics is, including 
more examples of semantics in practice, grab a copy of 
Semantics for Dummies.

A SIMPLE AND POWERFUL DATA MODEL
Graph databases have risen quickly in popularity in 
recent years, and triple stores—where semantic data 
is stored—are considered a type of graph database.  
When data starts to take on a graph structure in 
which entities (people, places, and things) and the 
relationships between them are the most important 
thing, it is better to use semantics. 

Semantic facts and relationships are expressed with a 
subject-predicate-object construction, and are known 
as RDF triples (RDF stands for “Resource Description 

Framework”). An example of a triple is “John lives in 
London.” These triples are queried using a standard 
language called SPARQL, which is a lot like SQL. 

Using triples to describe facts and relationships is 
both simple and powerful. As one expert puts it, 
“Increasingly models are enterprise wide, and contain 
a high degree of variability for which SQL is just too 
cumbersome to handle well”… “RDF (and by extension 
SPARQL) becomes more important as the data models 
themselves become more complex, more associational, 
and more heterogeneous, simply because the variety of 
information will dominate over factors such as volume 
or velocity.”9

Some of the unique advantages of semantics include 
the following:

• Triples are universally understood and can be easily 
searched and shared

• Triples connect together to form graphs that are 
machine readable, and can even be used to infer 
new facts

9 Cagle, Kurt. “Why SPARQL Is Poised To Set the World on Fire.” June 4, 2016. 
<https://www.linkedin.com/pulse/why-sparql-poised-set-world-fire-kurt-cagle>

SEMANTICS IN PRACTICE
The British Standards Institution, or BSI, 
publishes standards and provides standards-
related services for businesses around the 
world. BSI developed an online application, 
British Standards Online (BSOL), for searching 
standards. 

Unfortunately, traditional keyword searches were 
unhelpful. For example, searching for “cardiac 
catheter” brought back zero results. Google 
was not helpful either, as a search for “cardiac 
catheter manufacturing standards” only brought 
back general links based on the keywords, not the specific, applicable standards. 

Using MarkLogic, BSI built a new application incorporating semantics in order to make searching standards 
better and faster. Semantics makes it possible to expand queries so that a user can just search for “cardiac 
catheters” and then see results based on conceptual relationships. So, even though a document about 
medical standards may not specifically mention “cardiac catheter,” it may mention “implantable devices” that 
are semantically related to cardiac catheters. 

Figure 10: Screenshot of BSI app
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• Common standards are defined by W3C for RDF 
triples and the query language, SPARQL

• Triple stores can scale to hundreds of billions of 
facts and relationships

• Triple stores can leverage ontologies to organize 
and categorize data (ontologies are like taxonomies, 
but are richer and more useful)

THE IMPACT OF A BETTER APPROACH
MANAGING DATA VARIABILITY
The unique features of triples and triple stores are 
generally put to use by organizations in two ways, 
all of which are aimed at providing context for data. 
One approach is to use triples to describe an almost 
limitless number of facts and relationships about an 
organization, a domain, or the world at large. This in 
turn can be used to enhance search.

Having a standard approach to defining facts and 
relationships helps manage data variability. There is 
variability in how organizations define entities (e.g., 
different column names for the same thing, or the 
same column name for different things). There is also 
variability in natural language (e.g., the word “sub” may 
refer to a naval submarine, or to a Subway* sandwich 
depending on the context).

Rather than relying on the relatively abstract and 
complex ways in which relationships are defined 
in relational databases, triples describe facts and 
relationships explicitly in the database. This is really 
beneficial for data integration because triples can 
connect data more easily than through joins or 
complex transformations.  For example, a triple could 
say the entity cust123 is the same as cus_id_456 
or is related to that cus_id_456 in a certain way. 
Relationships such as class and property relationships 
can be captured, going beyond what a traditional 
physical ER diagram shows. 

With these features, semantics provides a great 
data model for expanding searches. For example, it 
is possible to take a search input, such as “cardiac 
catheter” and expand that search to include results 
that have anything to do with “implantable devices” 
based on the semantic taxonomy or ontology. See the 
call-out-box above for more information on this type of 
search expansion.

MANAGING METADATA AND REFERENCE DATA
Triples can be used as metadata or reference data 
to describe data lineage (provenance and on-going 
history), data retention and temporality, security, 
relevance, or a wide variety of other facts about data. 
Rather than having to go elsewhere in search of the 
context for data, that context can now be connected 
to the data in the database. Returning to the earlier 
example of a database with various sizes for parts, it 
is possible to use triples to define the units (cm), the 
tolerance (h17, 0-1.20mm), that John measured it, that 
the measurement was taken on December 1, 2015, and 
that only employees in the manufacturing division can 
see the information. 

This approach is superior to the traditional relational 
approach in which metadata is usually non-existent 
or difficult to manage, and also has benefits when 
compared to a solely document-oriented approach. 
While metadata and reference data can be managed in 
JSON or XML documents, the document model does 
not have the ability to leverage the graph structure 
and machine readability of triples. These benefits, 
combined with the ability to do semantic inference and 
describe complex class and property relationships, 
make semantics ideal for storing metadata. When the 
data and metadata can be kept together in the same 
database, integrating data from disparate silos is a 
much smoother, less error-prone process. 

 “ Rather than relying on the relatively abstract and complex ways in which 
relationships are defined in relational databases, triples describe facts and 
relationships explicitly in the database.”
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THE MULTI-MODEL APPROACH 
COMBINING NOSQL AND 
SEMANTICS 
There is no single data model that works well for every 
use case. By necessity, organizations will require more 
than one model to support different types of data 
and workloads. The idea of using multiple models in 
combination is known as “polyglot persistence.” 

We take the position that polyglot persistence is best 
achieved by storing many kinds of data in one place 
rather that storing many types of data in many places, 
an approach that requires bolting together various 
different technologies. Other database vendors are 
coming to the same conclusion; and, as one analyst 
states, the “multi-model approach is the future of 
NoSQL.”10

Multi-model databases allow organizations to get the 
benefits of each model in a single platform, and get 
additional unique benefits that are only possible when 
both models exist in the same database. Currently, 
MarkLogic is the only enterprise-grade, multi-model 
database that combines a document database with 
semantics. In this section, we discuss the benefits of 
MarkLogic’s approach in more depth, but here is a 
quick summary:

• Document database (JSON, XML)
 - Flexibility and agility
 - Massive scale

• Triple Store (RDF)
 - Designed for entities and relationships
 - Designed to provide context

• Documents & Triples (JSON, XML, RDF)
 - Benefits of each of the above, and...
 - One single platform
 - Even more flexible data modeling
 - Improved query capabilities

10 Aslett, Matt. Toward a converged data platform, part one: SQL, NoSQL
Databases and data grid/cache. 451 Research. Dec. 3, 2015.

SIMPLICITY OF A UNIFIED DATABASE
By combining a NoSQL document database and triple 
store in MarkLogic, organizations get the benefits 
of both models without having to maintain separate 
systems. This alone is a huge benefit. It means 
drastically reducing the footprint for backup and 
recovery, development and testing, and search. It also 
means only having to maintain one security model and 
has implications for the size of the hardware footprint as 
well. So, rather than spending the majority of time and 
resources managing legacy data silos, organizations 
can focus on value-adding activities.

MORE FLEXIBILITY, MORE POWER
With MarkLogic, organizations can store data as 
documents or as triples, all depending on the use case. 
For example, one common pattern already discussed 
is using triples to expand document searches with 
semantic taxonomies or ontologies.

When deciding which data type to use, it is easiest to 
think of JSON as the best data type for objects (e.g., 
customer, stock trade), XML for text (e.g., blog post, 
news article), and RDF triples for facts and relationships 

Figure 11: MarkLogic is an enterprise-grade, multi-model database that 
makes it possible to store data, documents, and triples all in a single 

unified platform 

DOCUMENTS TRIPLESDATA

 “ Polyglot persistence is best achieved by storing many kinds of data in one 
place rather that storing many types of data in many places.”
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(e.g., J.J. Abrams directed Star Wars, a story by George 
Lucas).  Table 1 above has more detail on each data 
model. With this optionality, organizations can choose 
the right tool for the job rather than having to deal with 
the cumbersome constraints that relational databases 
apply to the increasing volume of multi-dimensional 
data.

IMPROVED QUERY CAPABILITIES
With a better data model, it is possible to ask harder 
questions of the data (and usually with less code). 
There are new kinds of queries that are possible with 
MarkLogic that are not possible with SQL, and other 
queries can be written more simply than with SQL. 

MarkLogic’s document model provides some unique 
query capabilities such as being able to search the 
free text within documents and rank data by relevance. 
MarkLogic’s triple store provides the ability to navigate 
a graph of relationships and do semantic inference. 
With inferencing, new triples can be added to the graph 
and then leveraged based on how existing triples are 
defined and related. 

Combining both models together in MarkLogic opens 
up the door for more types of queries. MarkLogic 
provides APIs to mix SPARQL queries with traditional 
MarkLogic document search queries, making it possible 
to expand a document search using graphs, enhance 
a graph search by linking to documents, and restrict 
document searches using triples metadata. With more 
options for how to ask questions of the data, the better 
the answers will be.

GET GOING WITH A BETTER 
DATA MODEL
This paper is only scratching the surface of the benefits 
of NoSQL and semantics and what is possible when 
starting with a better data model. Making the move 
from the old world of data modeling to the new may 
seem daunting at first, but there are many leading 
organizations that have already adopted the multi-
model approach and are seeing the benefits. Here, we 
provide some links to more information so that you can 
get the process started.

JSON XML RDF JSON/XML + RDF

Usage Ideal for structured data 
that is stored as objects

Ideal for structured and 
unstructured data or text

Ideal for facts and 
relationships

Ideal for systems of data, 
text, and relationships

Description • Schema-agnostic
• Query with JavaScript 
• Compact and fast to 

parse
• Six kinds of values: 

objects, arrays, floats, 
strings, booleans, 
nulls

• Avoids namespaces, 
comments and 
attributes

• Common data format 
for the web

• Schema-agnostic
• Query with XQuery
• Can store objects, 

sets, and many data 
types such as dates, 
durations, integers, 
and more

• Uses namespaces 
(for embedding object 
types), comments, 
and attributes (for 
adding metadata)

• More maturity than 
JSON as a data 
model

• Define entities and 
relationships

• Atomic structure 
(cannot be broken 
down further)

• Uses universal 
standards for data 
and querying (RDF 
and SPARQL

• Used for reference 
data, metadata, 
provenance

• Documents can 
contain triples

• Triples can annotate 
documents

• Graphs of triples can 
contain documents

• Enhanced querying:
 - Expand a 

document search 
using graphs

 - Enhance graph 
search by linking 
to documents

 - Restrict document 
search using 
triples metadata

Table 1: Usage and descriptions of different data models in MarkLogic
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MORE INFORMATION
Enterprise NoSQL for Dummies
po.st/nosqlfordummies 
Read the book to get a good general overview of the 
different types of NoSQL databases and what to look 
for when evaluating them.

Semantics for Dummies
po.st/semantics 
Get a deeper dive into the world of semantics, learning 
about the various use cases and the top ten things to 
look out for when considering semantics.

Customer Presentation
po.st/multimodeldataintegration 
Hear how one customer analyzes data models, and 
how his large organization is applying NoSQL and 
semantics.

Modern Approach to Data Modeling
po.st/modeling 
Watch this presentation by MarkLogic engineers that 
goes into depth about multi-model data integration in 
the real world.

 “ With a multi-model approach, organizations can choose the right tool for the 
job rather than having to deal with the cumbersome constraints that relational 
databases apply to the increasing volume of multi-dimensional data.”

http://www.marklogic.com
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http://po.st/semantics
http://po.st/multimodeldataintegration
http://po.st/modeling
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