
The API Debate:

GraphQL vs. OData

Ken Beutler - Principal Product Manager

Brody Messmer - Senior Manager, Software Engineering

May 30, 2018

2 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Agenda
▪ Introduction to GraphQL and OData

▪ Capabilities

• Use Cases

• Comparison

▪ Differences Between GraphQL and OData

• Simplicity

• Data Types

• Metadata

• Versioning / Schema Evolution

• Pagination

• Other / Advanced Features

• Community

▪ Examples

▪ Q&A

3 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Introduction to GraphQL
and OData

4 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Overview

OData GraphQL

Initially developed by Microsoft in 2007, OData

(Open Data Protocol) is an OASIS standard that

defines the best practice for building and consuming

RESTful APIs.

Developed by Facebook in 2012, GraphQL is a

query language for APIs and a server-side runtime

for fulfilling those queries by using a type system

you define for your data.

5 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Popularity

6 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Capabilities
Use Case

7 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

OData Use Cases

▪ Open Analytics

▪ Explosion of SaaS applications

▪ IT Modernization to the cloud

▪ Hybrid Data Pipeline

8 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

GraphQL Use Cases

▪ GitHub’s v4 of their API was entirely refactored to leverage

GraphQL to solve:

• Scalability and performance

• The collection of metadata about their endpoints

9 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Hammers, Apples and Oranges

10 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Differences Between
GraphQL and OData

11 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Simplicity

12 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Data Types

Many use cases don’t require a wide variety of types, so limiting the

types supported keeps things simple…until you're forced to jump

through hoops to support a non-native type.

33 Simple Types Defined String, Int, Float, Boolean, and custom

• Lacks Decimal (Currency as

Float/String)

• Lacks Date/Timestamp

Supports complex types Supports complex types

Weak data typing Strong data typing

13 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Metadata

Allows generic applications to be written by allowing them to:

• Discover Data Available (Catalog Metadata)

• Discover Capabilities and Expected Behavior

Rich catalog metadata API

• Everything returned in a single call

Introspection provides rich catalog metadata

• Nested data requires iterative

introspection

Rich capability reporting with clearly defined

behaviors

Introspection provides insight into query

capabilities, but naming convention and

behaviors are not defined.

14 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Subset of OData Query Options

System Query Option SQL Construct Description

$filter WHERE clause Restrict the entities returned when querying an

entity set to those matching the filter criteria

$select SELECT list Specify the properties to be included in the

returned entities

$orderby ORDER BY clause Specify the sorting of the returned entities

$expand INNER JOIN Include related entities and complex types

nested in the returned entities

$count COUNT(*) Include the count of the number of entities

returned in the result

$search Full Text Search Restrict the entities returned when querying an

entity set to those matching the search

expression

$top and $skip TOP/SKIP and LIMIT/OFFSET Enable client to page through results

$format N/A Specify the desired data format for the

response

15 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Versioning / Schema Evolution

Schemas evolve rapidly in our world of Agile development. Our

tools must allow for this evolution to occur while avoiding breaking

changes from deprecating fields.

Well defined protocol and model versioning within

the OData spec.

Apps/Clients must request the exact data they want

• Easy to identify who’s using what (or what’s

not getting used)

• Promotes efficient code

@Deprecated annotation with comments returned

via introspection. Deprecated fields can still be

requested, thus avoiding breaking changes.

Versioning available, but discouraged

16 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Pagination

Most APIs require the ability to page data to avoid returning millions

of rows of data.

Most applications only have a need of displaying a subset of data at

a given time.

Consistent behavior that is either client or server

driven:

Next links with maxpagesize setting as well as

$top and $skip.

Implementation specific and not easily discoverable

17 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Other/Advanced Features

Feature

Response Caching HTTP, 3rd Party OData centric, Build

Your Own

3rd Party GraphQL centric(GraphQL

Client), Build Your Own

Transactions Yes – “Change Sets” No (some say “not needed”)

Delta Response

(CDC)

Yes No

Subscriptions /

Callbacks

Yes – Callbacks Yes – Subscriptions

Writing Data Yes - HTTP POST, PUT, PATCH or

DELETE operations utilized with data

included in the payload.

Yes – Called “Mutations”

Mutations can return data modified. All

mutations utilize POST.

Primary Keys Very Flexible (Composite Keys) Single “ID” Field

Data Formats JSON, XML JSON

18 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Community

Open Source Community Yes Yes

Server Libraries .NET, Java, JavaScript, Python .NET, Clojure, Elixir, Erlang, Go,

Groovy, Java, JavaScript, PHP,

Python, Scala, Ruby

Client Libraries .NET, C++, Java, JavaScript, Python,

Tcl/Tk

.NET, Go, Java, JavaScript,

Python, Swift/Objective-C

http://www.odata.org/libraries/ http://graphql.org/code/

http://www.odata.org/libraries/
http://graphql.org/code/

19 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Examples

20 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Retrieving Metadata (XML) – OData
http://localhost:5000/odata/$metadata

<edmx:Edmx
xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<edmx:DataServices>

<Schema
xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace=”ProgressNext.Models">
<EntityType Name="Book">

<Key>
<PropertyRef Name="Id"/>

</Key>
<Property Name="Id" Type="Edm.Int32" Nullable="false"/>
<Property Name="Name" Type="Edm.String" Nullable="false"/>
<Property Name="AuthorId" Type="Edm.Int32"/>
<Property Name="PublisherId" Type="Edm.Int32"/>
<NavigationProperty Name="Author" Type=" ProgressNext.Models.Author">

<ReferentialConstraint Property="AuthorId" ReferencedProperty="Id"/>
</NavigationProperty>
<NavigationProperty Name="Publisher" Type=" ProgressNext.Models.Publisher">

<ReferentialConstraint Property="PublisherId" ReferencedProperty="Id"/>
</NavigationProperty>

</EntityType>
<EntityType Name="Publisher">

<Key>
<PropertyRef Name="Id"/>

</Key>
<Property Name="Id" Type="Edm.Int32" Nullable="false"/>
<Property Name="Name" Type="Edm.String" Nullable="false"/>
<NavigationProperty Name="Books" Type="Collection(ProgressNext.Models.Book)"/>

</EntityType>
</Schema>

<edmx:Edmx
xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<edmx:DataServices>

<Schema
xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Default">
<EntityContainer Name="Container">

<EntitySet Name="Book" EntityType="ProgressNext.Models.Book">
<NavigationPropertyBinding Path="Author" Target="Author"/>
<NavigationPropertyBinding Path="Publisher" Target="Publisher"/>

</EntitySet>
<EntitySet Name="Author" EntityType="ProgressNext.Models.Author"/>
<EntitySet Name="Publisher" EntityType="ProgressNext.Models.Publisher">

<NavigationPropertyBinding Path="Books" Target="Book"/>
</EntitySet>

</EntityContainer>
</Schema>

</edmx:DataServices>
</edmx:Edmx>

http://localhost:5000/odata/$metadata

21 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Retrieving Metadata (JSON) – GraphQL

{
__schema {
types {
name fields
{
name

}
}

}
}

http://localhost:4000/graphql?query= {
"data": {
"__schema": {
"types": [
{
"name": "Query",
"fields": [
{
"name": "Books"

},
{
"name": "Book"

},
{
"name": "Authors"

},
{
"name": "Publishers"

}
]

},

{
"name": "Author",
"fields": [
{
"name": "id"

},
{
"name": "name"

},
{
"name": "Books"

}
]

},
{
"name": "Publisher",
"fields": [
{
"name": "id"

},
{
"name": "name"

}
]

},

{
__type(name: "Author")
{
name,
fields
{
name,
type
{
name,
kind

}
}

}
}

{
"data": {

"__type": {
"name": "Author",
"fields": [

{
"name": "id",
"type": {

"name": "Int",
"kind": "SCALAR"

}
},
{

"name": "name",
"type": {

"name": "String",
"kind": "SCALAR"

}
},
{

"name": "Books",
"type": {

"name": null,
"kind": "LIST"

}
}

]
}

}
}

http://localhost:4000/graphql?query

22 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Standard Queries – OData

{
"@odata.context": "http://localhost:5000/odata/$metadata#Book(Id,Name)/$entity",
"Id": 1,
"Name": "Into Thin Air"

}

{
"@odata.context": "http://localhost:5000/odata/$metadata#Book/$entity",
"Id": 1,
"Name": "Into Thin Air",
"AuthorId": 4,
"PublisherId": 2

}

{
"@odata.context": "http://localhost:5000/odata/$metadata#Book",
"value": [

{
"Id": 1,
"Name": "Into Thin Air",
"AuthorId": 4,
"PublisherId": 2

},
{

"Id": 2,
"Name": "Into the Wild",
"AuthorId": 4,
"PublisherId": 2

},
{

"Id": 3,
"Name": "Under the Banner of Heaven: A Story of Violent Faith",
"AuthorId": 4,
"PublisherId": 2

},
{

"Id": 4,
"Name": "The Lost Symbol",
"AuthorId": 1,
"PublisherId": 2

},

Get the book collection

http://localhost:5000/odata/Book

Get a book entity using an ID

http://localhost:5000/odata/Book(1)

Get a book entity using an ID and restrict results

http://localhost:5000/odata/Book(1)?$select=Id,Name

http://localhost:5000/odata/Book
http://localhost:5000/odata/Book(1)
http://localhost:5000/odata/Book(1)?$select=Id,Name

23 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Standard Queries – GraphQL
http://localhost:4000/graphql?query= {

"data": {
"Books": [

{
"id": 1,
"name": "Into Thin Air",
"authorId": 4,
"publisherId": 2

},
{

"id": 2,
"name": "Into the Wild",
"authorId": 4,
"publisherId": 2

},
{

"id": 3,
"name": "Under the Banner of Heaven: A Story of Violent Faith",
"authorId": 4,
"publisherId": 2

},
{

"id": 4,
"name": "The Lost Symbol",
"authorId": 4,
"publisherId": 2

},

{
Books {

id,
name,
authorId,
publisherId

}
}

{
"data": {

"Book": {
"id": 1,
"name": "Into Thin Air",
"authorId": 4,
"publisherId": 2

}
}

}

{
"data": {

"Book": {
"id": 1,
"name": "Into Thin Air"

}
}

}

{
Book(bookId: 1) {

id,
name

}
}

{
Book(bookId: 1) {

id,
name,
authorId,
publisherId

}
}

http://localhost:4000/graphql?query

24 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Advanced Queries – OData
Retrieving related resources (join) inline with requested resource(s)

http://localhost:5000/odata/Author(3)?$expand=Books($select=Name)

{
"@odata.context": "http://localhost:5000/odata/$metadata#Author",
"value": [

{
"Id": 3,
"Name": "J.K. Rowling",
"Books@odata.context": "http://localhost:5000/odata/$metadata#Author(3)/Books",
"Books": [

{
"Name": "Harry Potter and the Sorcerer's Stone"

},
{

"Name": "Harry Potter And The Chamber Of Secrets"
},
{

"Name": "Harry Potter and the Prisoner of Azkaban"
},
{

"Name": "Harry Potter And The Goblet Of Fire"
}

]
}

]
}

http://localhost:5000/odata/Author(3)?$expand=Books($select=Name)

25 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Advanced Queries – GraphQL
http://localhost:4000/graphql?query=

{
Authors {
id,
name,
Books {
name

}
}

}

{
"data": {
"Authors": [
{
"id": 3,
"name": "J.K. Rowling",
"Books": [
{
"name": "Harry Potter and the Sorcerer's Stone"

},
{
"name": "Harry Potter And The Chamber Of Secrets"

},
{
"name": "Harry Potter and the Prisoner of Azkaban"

},
{
"name": "Harry Potter And The Goblet Of Fire"

}
]

}
]

}
}

http://localhost:4000/graphql?query

26 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Ordering and Filtering – OData
Retrieving a resource using selection, ordering and filtering criteria

http://localhost:5000/odata/Author?$orderby=Name&$select=Name,%20Id&$filter=Id%20ne%203

{
"@odata.context": "http://localhost:5000/odata/$metadata#Author(Name,Id)",
"value": [
{
"Name": "Dan Brown",
"Id": 1

},
{
"Name": "Jon Krakauer",
"Id": 4

},
{
"Name": "Robert C. Martin",
"Id": 2

}
]

}

http://localhost:5000/odata/Author?$orderby=Name&$select=Name, Id&$filter=Id ne 3

27 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Ordering and Filtering – GraphQL
Retrieving a resource using selection, ordering and filtering criteria will require GraphQL schema and resolver changes

type Query {
Books: [Book],
Author(authorId: Int, orderBy: AuthorOrderByInput, field:String, fieldValue: Int, filterOp: String): [Authors],
Authors: [Author],
Publishers: [Publisher]

}

{
Author(

orderBy: name_ASC,
field: "id",
fieldValue: 3,
filterOp: "ne")

{
name
id

}
}

Request: Response:

{
"data": {

"Authors": [
{

"name": "Dan Brown",
"id": 1

},
{

"name": "Jon Krakauer",
"id": 4

},
{

"name": "Robert C. Martin",
"id": 2

}
]

}
}

28 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Writing Data (Mutations) – GraphQL
Requires GraphQL schema changes:

input BookInput {
name: String
authorId: Int
publisherId: Int

}

type Mutation {
createBook(name: String!, authorId: Int!, publisherId: Int!): Book
updateBook(input:BookInput!): Book
deleteBook(id:Int!): Boolean

}

{
"data": {

"Books": [
{

"id": 14,
"name": "Harry Potter and the Deathly Hallows ",
"authorId": 3,
"publisherId": 3

}
]

}
}

mutation {
createBook(

name: "Harry Potter and the Deathly Hallows",
authorId: 3,
publisherId: 3)

{
id,
name,
authorId,
publisherId

}
}

Request: Response:

29 © 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Q&A

