
Continuous Integration &
Continuous Delivery (CI/CD)
DATA SHEET

Progress Professional

Services experts can

quickly help you build a

CI/CD strategy that is

right for your business.

•	 Discovery Workshop

•	 Technical Process

Assessment

•	 Strategy Discussion

•	 Recommended

 Approach and Tooling

•	 Introduction and usage

 of the OpenEdge

DevOps Framework

•	 Implementation of the

 recommended

approach

The prerequisites for using

the OpenEdge DevOps

Framework are:

•	 OpenEdge 12.2 or later

•	 Gradle 7.3.3

•	 Java 11

•	 pct, which is sued from

DLC or pct, by default

•	 An ABL Project

The software delivery model in legacy platforms tends to be extremely complex and

very labor-intensive. The separation of IT from development as well as monolithic, on-

premises ecosystems dictate that software releases are done infrequently and at great

risk. If that describes your organization, you need to build a repeatable process that

includes integrated tooling, services, data and processes to enable your engineers to

plan, build, test, release and manage your software delivery practice.

To compete in today’s agile and frequently changing environments, releases need to

occur in weeks, days or as needed with mature and well-organized DevOps strategies.

Having DevOps best practices ensure efficiencies and extensibility as software

platforms are expected to support microservices architecture, containers and cloud

technologies.

To scale for continuous delivery and deployment, having a fully baked CI/CD strategy is

required for DevOps teams to effectively deliver software releases quickly and reliably.

A continuous and automated delivery methodology is the backbone that makes fast

and reliable software delivery possible.

Introducing the OpenEdge DevOps Framework

As part of a typical application development lifecycle, mission critical business

applications go through many cycles of incremental changes, complete with code

changes, compilation, builds and validation. Often these cycles are repeated multiple

times a day before a release is made available to users. Continuous integration (CI) is a

practice that focuses on optimizing the process of generating these incremental builds

and validating them. In the illustration below CI represents DevOps and describes a

typical software development and delivery process.

For ABL applications, the OpenEdge DevOps Framework is designed to help with

implementing an efficient CI pipeline that handles compilation, repository integration,

testing and packaging. It also provides the convenience of sharing the CI pipeline

configuration between the development and production build processes.

The OpenEdge DevOps Framework comprises a set of plugins designed to address the

requirements of two types of users:

© 2023 Progress. All Rights Reserved. 2

•	 Users who are new to the CI process and want a simple way to set up their pipeline.

•	 Advanced DevOps engineers with a complex CI process and additional flexibility

needs.

The OpenEdge DevOps Framework provides the convenience of sharing the CI pipeline

configuration between the development and production build processes.

Gradle Basics

Gradle is an open-source project automation tool, which is an evolution of the concepts used

in Apache Ant and Apache Maven. Instead of traditional XML, Gradle uses a domain-specific

language based on Groovy for project configuration. Gradle intelligently determines which parts

of a build tree are up to date and executes only the needed parts. This process allows builds to be

smarter, faster and more efficient because it eliminates redundancies in the build phase.

The OpenEdge DevOps Framework provides Gradle plugins to evolve the way ABL applications are

built. The following basic Gradle terminologies and concepts are helpful when using the OpenEdge

DevOps Framework:

•	 Plugin - Gradle plugins add task objects and conventions to your Gradle environment.

They are the primary method of extending capabilities using Gradle.

•	 Task - A Gradle task is the smallest piece of work for a build. For example, compiling

classes or generating ABL doc. It is the building block of Gradle functionality.

•	 Task type - Defines the blueprint of a task. Some tasks may require configurations

like input or output parameters to provide certain capability. The blueprint for these

parameters is defined by the task type for the piece of work that can be set while

creating a task.

•	 Task dependencies - Gradle tasks can depend on other tasks.

•	 Extension - Plugins can add Extension, allowing you to configure several settings and

properties. Task types use these settings and properties as global configurations to

set some of their properties.

•	 Groovy DSL—You can write Gradle build scripts using a Groovy or Kotlin DSL.

Building an ABL project involves various steps such as managing project dependencies, compiling

ABL files, performing unit tests, generating ABL API documentation, packaging the artifacts and

publishing them to an artifact repository.

© 2023 Progress Software Corporation and/or its subsidiaries or affiliates.
All rights reserved.Rev 2023/02 | RITM0193973

Contact Us for more information on a
jumpstart to best practices for CI/CD

/progresssw

/progresssw

/progresssw

/progress-software

/progress_sw_

https://gradle.org
https://www.progress.com/services/contact
https://www.progress.com/services/contact
https://www.progress.com/services/contact

