
Integrating
OpenEdge with
Multiple JMS
Providers Channels

SOLUTION BRIEF

OpenEdge JMS Adapter

© 2021 Progress. All Rights Reserved. 2

Introduction
The Java Message Service (JMS) is a messaging standard Java API for sending and

receiving messages between two or more applications. Progress has supported standard

JMS messaging for a long time.

With the introduction of the Progress® OpenEdge® JMS adapter in 11.7.2 and 12.0.0, the

dependency on the AdminServer and NameServer is removed, as the JMS Adapter is

independent and should work with any OpenEdge server. This new component allows

you to run multiple JMS adapters at the same time using BrokerConnect mode. This

whitepaper covers how to configure an OpenEdge instance to work with multiple JMS

adapters.

The Progress OpenEdge JMS adapter is available as a separate download from the

OpenEdge installation in the OpenEdge 12 release family. For installation instructions

for Windows and UNIX platforms, see Install the Progress OpenEdge JMS Adapter

documentation.

https://docs.progress.com/bundle/openedge-new-info-1172/page/Working-with-OpenEdge-JMS-Adapter.html
https://docs.progress.com/bundle/use-openedge-jms-adapter/page/Install-the-Progress-OpenEdge-JMS-Adapter.html

© 2021 Progress. All Rights Reserved. 3

Thread 01

QUEUE

Thread 02

API—JMS

API—JMS

Thread 03

Thread 01

Thread 02

Thread 03

OpenEdge JMS
Adapter

Sonic MQ Broker (Port:2506)

QUEUE

Active MQ Broker (Port:61616)

MQAdapter

MQAdapter
JMS

JMS

Architecture
The OpenEdge JMS Adapter is built to work with any compliant JMS provider. In the

diagram below, you can see that there is one adapter instance for two sample providers:

SonicMQ and ActiveMQ. Each adapter works with the provider it has been configured for.

NOTE: This whitepaper assumes that you have the two JMS providers

configured for use with your OpenEdge JMS Adapter.

For information on how to configure a JMS provider, see the vendor specific

documentation.

© 2021 Progress. All Rights Reserved. 4

How to Configure Multiple JMS
Adapters for PAS for OpenEdge
There are four high-level tasks you must perform to configure multiple JMS providers to

work with PAS for OpenEdge using the OpenEdge JMS Adapter’s BrokerConnect mode.

This section provides a brief overview of the four tasks. The next section of this document

shows a step-by-step example of these tasks in practice.

High-level tasks:

• Verify that your JMS provider is listed in the $DLC/properties/jmsProvider.properties file

• Set up the OpenEdge JMS Adapter configuration in the ubroker.properties file

• Set environment variables for each JMS provider’s OpenEdge JMS Adapter

• Start the OpenEdge JMS Adapter for each JMS provider

Verify that your JMS provider is listed in the
$DLC/properties/jmsProvider.properties file

By default, the $DLC/properties/ubroker.properties file contains the following definition of

the example sonicMQ1 adapter:

[MyJMSProvider]

javax.jms.ConnectionFactory=

javax.jms.QueueConnectionFactory=

javax.jms.TopicConnectionFactory=

© 2021 Progress. All Rights Reserved. 5

Set Up the JMS Adapter Configuration in
ubroker.properties

By default, the $DLC/properties/ubroker.properties file contains the following definition of

the example sonicMQ1 adapter:

For every JMS adapter that you want to configure, add a similar section and customize

the property values. An example of this is shown in Step 1 of the next section of this

document, “Setting Up Multiple JMS Adapters for OpenEdge.”

Set Environment Variables for each JMS
provider’s OpenEdge JMS Adapter

For every OpenEdge JMS Adapter that you want to start, you must set the following two

environment variables in a separate proenv session:

For example:

The JMS provider client jar file is provided as part of your JMS provider installation.

Sample SonicMQ adapter definition

[Adapter.sonicMQ1]

appserviceNameList=adapter.progress.jms

brokerLogFile=@{WorkPath}\sonicMQ1.broker.log

controllingNameServer=NS1

description=Sample SonicMQ Adapter broker

portNumber=3620

srvrLogFile=@{WorkPath}\sonicMQ1.server.log

uuid=932.99.999.XXX:1ee77e:cf3bbe3d33:-8030

proenv> export JMSPROVIDER=ActiveMQ

proenv> export JMSCLIENTJAR=path/to/ActiveMQ/activemq-all-5.15.6.jar

© 2021 Progress. All Rights Reserved. 6

Setting Up Multiple JMS Adapters for
PAS for OpenEdge

Follow these step-by-step instructions for setting up multiple JMS adapters for a PAS for

OpenEdge instance and executing a round-trip using SonicMQ, ActiveMQ and WebSphere

MQ.

1. Add/validate JMS adapter sections as required in ubroker.properties. The following

example shows JMS adapter definitions for ActiveMQ and WebSphere MQ, which are

provided in addition to the Sonic MQ adapter definition:

Sample ActiveMQ adapter definition

[Adapter.ActiveMQ1]

appserviceNameList=adapter.progress.jms

brokerLogFile=@{WorkPath}\ActiveMQ1.broker.log

controllingNameServer=NS1

description=Sample ActiveMQ Adapter broker

portNumber=3621

srvrLogFile=@{WorkPath}\ActiveMQ1.server.log

uuid=932.99.999.XXX:1ee77f:cf3bbe3d33:-8031

Sample WebSphere MQ adapter definition

[Adapter.WebSphereMQ1]

appserviceNameList=adapter.progress.jms

brokerLogFile=@{WorkPath}\WebSphereMQ1.broker.log

controllingNameServer=NS1

description=Sample WebSphereMQ Adapter broker

portNumber=3622

srvrLogFile=@{WorkPath}\WebSphereMQ1.server.log

uuid=932.99.999. XXX:1ee77g:cf3bbe3d33:-8032

mailto:brokerLogFile=@%7bWorkPath%7d%5CActiveMQ1.broker.log
mailto:srvrLogFile=@%7bWorkPath%7d%5CActiveMQ1.server.log
mailto:brokerLogFile=@%7bWorkPath%7d%5CWebSphereMQ1.broker.log
mailto:srvrLogFile=@%7bWorkPath%7d%5CWebSphereMQ1.server.log

© 2021 Progress. All Rights Reserved. 7

2. Launch two proenv windows. In one window, set JMSPROVIDER and JMSCLIENTJAR

for ActiveMQ. In the other window, set JMSPROVIDER and JMSCLIENTJAR for

WebSphere MQ.

proenv1 (ActiveMQ):

proenv2 (WebSphere MQ):

proenv3 (SonicMQ):

proenv>export JMSPROVIDER=ActiveMQ

proenv>export JMSCLIENTJAR=$DLC/java/ext/hawtbuf-1.11.

jar: $DLC/java/ext/slf4j-api-1.7.5.jar:$DLC/java/ext/geronimo-

j2eemanagement_1.1_spec-1.0.1.jar:$DLC/java/ext/activemq-client-

5.15.6.jar:$DLC/ java/ext/geronimo-jms_1.1_spec-1.1.1.jar

proenv> oemessaging start ActiveMQ1

NOTE: Here ActiveMQ1 is a broker name in ubroker.properties

proenv>export JMSPROVIDER=WebSphereMQ

proenv>export JMSCLIENTJAR=<IBM_install_Location>/MQShared/java/

lib/com.ibm.

mqjms.jar:$WRKDIR/AdminObjectFinder.jar

proenv>oemessaging start WebSphereMQ1

NOTE: Similarly, WebSphereMQ1 is a broker name in ubroker.properties

proenv>export JMSPROVIDER=SonicMQ

proenv>export JMSCLIENTJAR=<Sonic-client-jar-path>/ sonic_Client.jar

proenv>oemessaging start

NOTE: Releases before 12.2 defaulted to SonicMQ1 adapter and changed to

GenericMQ1 adapter from 12.2 OE version onwards. We strongly recommend

explicitly naming the adapter to oemessaging start.

© 2021 Progress. All Rights Reserved. 8

3. Example procedures to send and receive from an ABL client. Sample code for <JMS

Adapter>_producer.p to send a message to a queue:

Sample code for <JMS Adapter>_consumer.p to consume a message

from a queue:

/* Sending a message to SampleQ1 */

DEFINE VARIABLE hMessage AS HANDLE NO-UNDO.

DEFINE VARIABLE hPTPSession AS HANDLE NO-UNDO.

/* Creates PTP session*/

RUN jms/ptpsession.p PERSISTENT SET hPTPSession (“-H localhost -S

<port> -DirectConnect -AppService AD.<MQName>”).

/*Connects to the broker */

RUN setBrokerURL IN hPTPSession (INPUT “tcp//

machinename:2506”).

RUN setUser IN hPTPSession (INPUT “<username>”).

RUN setPassword IN hPTPSession (INPUT “<password>”).

RUN beginSession IN hPTPSession.

/* Create a message */

RUN createTextMessage IN hPTPSession (OUTPUT hMessage).

RUN setText IN hMessage (“Message”).

/*Send the message to “SampleQ1” */

RUN sendToQueue IN hPTPSession (“SampleQ1”, hMessage, ?, ?, ?)

/* Delete message and session */

RUN deleteMessage IN hMessage.

RUN deleteSession IN hPTPSession.

Message “Sent”.

/* Receives a message from SampleQ1. */

DEFINE VARIABLE hConsumer AS HANDLE NO-UNDO.

DEFINE VARIABLE hPTPSession AS HANDLE NO-UNDO.

/* Creates PTP session*/

RUN jms/ptpsession.p PERSISTENT SET hPTPSession (“-H localhost -S

<port> -DirectConnect -AppService AD.<MQName>”).

/*Connects to the broker */

RUN setBrokerURL IN hPTPSession (INPUT “tcp//

machinename:2506”).

RUN setUser IN hPTPSession (INPUT “<username>”).

© 2021 Progress. All Rights Reserved. 9

4. Example of messaging with PAS for OpenEdge from an ABL client

5. Example of messaging with PASOE from an ABL client

Example of messaging with PAS for
OpenEdge from an ABL client

1. Create a PAS for OpenEdge instance. The following command creates an instance

called instJMS:

RUN setPassword IN hPTPSession (INPUT “<password>”).

RUN beginSession IN hPTPSession.

/* Messages received from SampleQ1 are handled by the “myintproc”

procedure. */

RUN createMessageConsumer IN hPTPSession

 (THIS-PROCEDURE, “myintproc”, OUTPUT hConsumer).

RUN receiveFromQueue IN hPTPSession (“SampleQ1”, ?, hConsumer).

RUN startReceiveMessages IN hPTPSession.

/* Wait to receive the messages. */

AIT-FOR u1 OF THIS-PROCEDURE.

/* Delete session */

RUN deleteSession IN hPTPSession.

PROCEDURE myintproc:

 DEFINE INPUT PARAMETER hMessage AS HANDLE NO-UNDO.

 DEFINE INPUT PARAMETER hConsumer AS HANDLE NO-UNDO.

 DEFINE OUTPUT PARAMETER hReply AS HANDLE NO-UNDO.

 DISPLAY DYNAMIC-FUNCTION(‘getText’:U IN hMessage) format “x(70)”.

 /* Delete message */

 RUN deleteMessage IN hMessage.

 APPLY “U1” TO THIS-PROCEDURE.

END.

proenv>pasman create instJMS

NOTE: Create more producer and consumer programs for respective JMS Adapters

by updating the sample program code mentioned above.

© 2021 Progress. All Rights Reserved. 10

2. Deploy ABL code to the instance’s /openedge directory.

3. Start the OpenEdge instance.

4. Develop a client to connect to the OpenEdge instance and execute the deployed

ABL code.

For example, the following is an ABL client program that connects to a OpenEdge

instance over APSV with the request to execute Sonic_producer.p:

proenv>cp Sonic_producer.p instJMS/openedge

proenv>cp Sonic_consumer.p instJMS/openedge

proenv>cp ActiveMQ_producer.p instJMS/openedge

proenv>cp ActiveMQ_consumer.p instJMS/openedge

proenv>cp WebSphereMQ_producer.p instJMS/openedge

proenv>cp WebSphereMQ_consumer.p instJMS/openedge

proenv>instJMS/bin/tcman.sh start

DEFINE VARIABLE UserName AS CHARACTER.

DEFINE VARIABLE Pwd AS CHARACTER.

DEFINE VARIABLE happsrv AS HANDLE NO-UNDO.

CREATE SERVER happsrv.

IF happsrv:CONNECT(“-URL http://<machine name>:<port>/apsv”) THEN

DO :

 RUN Sonic_producer.p ON happsrv.

 happsrv:DISCONNECT().

END.

DELETE OBJECT happsrv.

NOTE: You can create more client programs by replacing Sonic_producer.p

with Sonic_ consumer.p, ActiveMQ_producer.p, ActiveMQ_consumer.p,

WebSphereMQ_ producer.p and WebSphereMQ_consumer.p

About Progress

Progress (NASDAQ: PRGS) provides the leading products to develop, deploy and manage high-impact business
applications. Our comprehensive product stack is designed to make technology teams more productive and enable
organizations to accelerate the creation and delivery of strategic business applications, automate the process by which
apps are configured, deployed and scaled, and make critical data and content more accessible and secure—leading to
competitive differentiation and business success. Learn about Progress at www.progress.com or +1-800-477-6473.

© 2021 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved. Rev 2021/11 RITM0135219

/progresssw

/progresssw

/progresssw

/progress-software

Learn More about working with the Generic
JMS Adapter

About the Author

Sai Tharun Kollampally is a Senior Software Engineer

at Progress. Tharun has started his career on server

components and gained extensive experience on

growing server technologies. He is an active participant

in hackathons, a quick learner and proactive in his role.

http://www.progress.com
https://www.facebook.com/progresssw
https://twitter.com/progresssw
https://www.youtube.com/user/ProgressSW
https://www.linkedin.com/company/progress-software/mycompany/
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/dvesb%2Fworking-with-the-generic-jms-adapter.html%23

