
PROGRESS APPLICATION
SERVER FOR OPENEDGE:
TUNING GUIDE
Author: Michael Jacobs
Senior Software Architect, Progress OpenEdge

https://www.progress.com/

2 Contents

Table of Contents

1 INTRODUCTION..........3

2 SERVER ARCHITECTURE..........4

2.1 PAS for OpenEdge and OS Process Limits..........4

2.2 Java Virtual Machine (JVM)..........5
2.2.1 Monitoring the JVM..........5
2.2.2 JVM Memory Management..........6
2.2.3 JVM Class Loaders..........7

2.3 Common PAS Web Server..........8
2.3.1 PAS Memory Usage..........9

2.4 PAS Startup Time..........10
2.4.1 HTTP Client Connections and HTTP Requests..........10
2.4.2 HTTP Request Execution..........11

2.5 OpenEdge ABL Web Application..........12
2.5.1 Running OpenEdge Business Logic in a Multi-Session Agent Process..........13
2.5.2 Monitoring OpenEdge Web Applications and Multi-Session Agents..........14

3 TUNING PAS FOR OPENEDGE..........4

3.1 Tuning Goals and Common Steps..........15

3.2 Tuning the PAS Server..........16
3.2.1 Tuning the JVM Memory and Garbage Collection..........17
3.2.2 Tuning the PAS Client Network Connections..........19
3.2.3 Tuning the PAS HTTP/HTTPS Request Processing..........21
3.2.4 Tuning the PAS Server Features..........21

3.3 Tuning the OpenEdge Web Applications and MS-Agents..........23
3.3.1 OpenEdge ABL Session Pool and Request Scheduling..........26

https://www.progress.com/

3 Contents

1 Introduction

Progress Application Server for OpenEdge (PAS for OpenEdge) is a web server preconfigured to
expose your Advanced Business Language (ABL) business and web-UI applications to HTTP
clients in an internet/intranet environment. Because PAS for OpenEdge is constructed on top of
a web server, it will not be configured, monitored or tuned like the classic Progress® OpenEdge®
Application Server that you may be used to, nor will PAS for OpenEdge behave like it.

This document provides basic guidance for tuning PAS for OpenEdge by providing you with
relevant architectural information and description of the configuration controls you will use.
After reading this paper, you can expect to have a basic understanding of where to begin
monitoring and tuning the execution of PAS for OpenEdge to achieve optimal performance for
your ABL application. What this document will not provide is in-depth architectural and run-
time information that may be required in some more advanced scaling scenarios when one PAS
for OpenEdge instance has reached its maximum capacity.

The PAS for OpenEdge configuration, when tapped for development, uses a set of defaults
that enable it to support a small number of web applications with moderate client loads across
many platforms. Your OpenEdge business application under development runs as just another
web application alongside any mobile application or third-party products you install.

The default configuration is sufficient for most development environments and some small
production sites. However, that default development configuration does not guarantee that
PAS for OpenEdge will operate at an optimal level for every combination of web applications.
Supporting a large test or production environment requires adjustments to the default PAS for
OpenEdge configuration. You can expect that you will establish a baseline PAS for OpenEdge
configuration for your ABL applications and then adjust it as needed per installation based on
customer hardware and usage.

As with tuning any web server environment, PAS for OpenEdge requires you to spend the time
to execute a monitor-adjust-observe cycle so that you can fine-tune its configuration and attain
maximum performance.

https://www.progress.com/

4 Contents

2 Server Architecture

Before you begin tuning your PAS for OpenEdge operation, it will help to understand the PAS
for OpenEdge architecture, how your ABL application relates to it and where certain critical
subsystems operate.

An ABL application running in PAS for OpenEdge is comprised of these major subsystems:
1. The OS process and its configured limits
2. The Java Virtual Machine (JVM)
3. The PAS based on Apache Tomcat
4. The OpenEdge web applications (oeabl.war)
5. The Multi-Session ABL language agent (MS-Agent)
6. The ABL application source code and architecture (ABL application)

Each of the major subsystems is described below to provide you with a basic understanding of
the role it plays in tuning PAS for OpenEdge for optimal performance.

Because the JVM and Apache Tomcat are used industry-wide, there are many internet-
accessible resources that provide additional tips and guidance. This document strives to use
real product terms so that your internet searches will return better results. Note that to simplify
local and remote administration, PAS for OpenEdge has externalized most of the Apache
Tomcat server configuration options using a Java property file. Where applicable a cross
reference is provided to assist in reading Apache Tomcat documentation.

2.1 PAS for OpenEdge and OS Process Limits

PAS for OpenEdge and any of its spawned subcomponents run in OS processes and therefore
are affected by the imposed resource maximums for memory, open files and so forth. Many
times, process limits differ between OS vendors, so being aware of what these limits are in
the OS you are running will assist you in knowing what the maximum setting can be for some
aspects of a PAS for OpenEdge configuration.

Other implied OS process limits also apply, such as CPU and memory. The number and speed
of the OS CPUs greatly influence the concurrent execution speed of client requests, and the
memory influences the number of concurrent client requests. When web applications use

https://www.progress.com/

5 Contents

only the PAS for OpenEdge REST and/or web transports, elastic scaling of client requests is
supported across multiple instances if the following conditions are met:

• All deployed OpenEdge web application security configurations use the BASIC
authentication model; and

• One or more deployed OpenEdge web application security configuration use the HTTP
FORM authentication model AND the server Session-Manager is configured to use a
shared cache mechanism (such as a SQL database amongst other possibilities) to share
HTTP sessions across all running instances.

All other PAS for OpenEdge application configurations require the elastic load balancer
configuration to use sticky sessions.

2.2 Java Virtual Machine (JVM)

The PAS server, in which OpenEdge web applications are deployed, runs in a JVM. The JVM
supplies all of the memory management, threads and I/O resources. The JVM is the point at
which you make critical tuning decisions that affect every aspect of server performance, such
as determining which web applications you deploy, how many clients it will support and how
fast it processes those client requests.

2.2.1 Monitoring the JVM

External products exist that allow you to connect to a JVM and sample its operating metrics.
The most basic of these products is JConsole, which is available as part of the standard Java
distribution. The JVM itself has some logging capabilities that allow a level of debugging such
as memory management. These logs may also be helpful in determining whether to make
changes to the JVM configuration.

Java Distribution Tools

JConsole Offers a JMX-compliant graphical tool for monitoring a JVM

jvisualvm Provides memory and CPU profiling, heap dump analysis, memory leak detection, access to
MBeans and garbage collection

jps Lists instrumented HotSpot Java Virtual Machines on a target system

jstat Collects and logs performance statistics as specified by the command line options

https://www.progress.com/

6 Contents

There are a number of third-party utilities that can be found on the internet if the tools listed
above are not sufficient.

The JVM also has garbage collection options that can be set to provide you with text output
on STDOUT for longer-term monitoring.

JVM Option Description

-verbosegc Enable verbose garbage collection output

-XX:+PrintGCDetails Print detailed garbage collection information

-XX:+PrintHeapAtGC Print before and after heap information when garbage collection is run

-XX:+PrintGCTimeStamps Add timestamps to garbage collection data

-XX:+PrintGCDateStamps Add date-stamps to garbage collection data

-Xloggc:<file> Output garbage collection data to <file>

Note: Garbage collection tuning is a highly technical topic that this paper does not explore.
There are many excellent books, internet articles and Oracle documentation that provide a
wealth of information on this topic.

2.2.2 JVM Memory Management

The JVM supplies two different memory regions that may be tuned for your specific ABL
application running in an end-customer environment: a stack region and a heap region.

The JVM stack region holds local variables and method call parameters, with everything else
allocated out of the heap region. Each JVM thread allocates space in the stack region. You can
estimate the size to which the stack region will grow by multiplying the maximum number of
JVM threads by the stack size configuration option value. Generally, you do not need to tune
the JVM stack region, but it is tunable to save memory when running smaller web applications
or to support very large complex web applications.

The JVM heap region is subdivided into generations, which indicate the longevity of allocated
objects before they are scanned and garbage-collected, after which the memory is made
available for reallocation. Once a JVM allocates OS process memory, it does not return the
process memory—even if the Java application returns to an idle state and garbage-collection
has made heap space available again. The OS process view of memory allocation indicates the

https://www.progress.com/

7 Contents

JVM peak memory load on the OS memory allocation, but it is not indicative of the application
steady-state memory usage. The JVM internal memory allocation needs to be accessed using
JVM monitoring tools.

Understanding the JVM generations becomes very important when configuring the amount of
memory available to application run-time operations and in the amount of memory available to
load and store application code. The JVM provides two separate configurations to control the
amount of memory:

Generation Configuration Category Description

Young heap (-Xms & -Xmx) Newly allocated memory reserved for run-time operations that
may have a short lifetime

Old heap (-Xms & -Xmx) Young generation memory allocations whose lifetime has
existed past a certain point and may exist for a longer time

Permanent
permgen
(-XX:PermSize &
 -XX:MaxPermSize)

Permanently loaded Java class and statics that are almost never
garbage-collected

The JVM garbage-collector is a highly complex mechanism that is designed to reclaim
orphaned or abandoned memory heap space allocations and make them available for use
again. The JVM supplies different implementations of tunable garbage-collectors to handle
different types of Java application loads, which in this case is Tomcat and its deployed web
applications. Selecting the right garbage-collector implementation and tuning it is largely
determined by which web applications are deployed and the amount of client request traffic.

The general rule is to minimize the allocation of stack and permgen space and give the rest of the
available process quota to the heap. The general rule for garbage-collector selection is to strike a
balance between running infrequent huge collections that stall the PAS server and running frequent
collections that deny CPU to the running web applications. Note that the balance point will be
different for each combination of web applications and its client request frequency and data load.

2.2.3 JVM Class Loaders

A JVM uses a subsystem named a class-loader to load Java class byte code into permgen
memory space and initialize that code. This relates to PAS in two ways: the Java security
system (which is not discussed here) and the allocation of permgen memory space. The
class-loader subsystem is really a hierarchy of individual class-loader instances. When a class
reference is made and it has not already been loaded, the JVM walks its hierarchy of class-
loaders to find it, from the root node to the current. In this way, classes can be shared across
multiple class-loaders by loading them by a class-loader at a higher level in the hierarchy.

https://www.progress.com/

8 Contents

This in turn reduces the load on permgen space because multiple class-loaders do not load
multiple copies of the same class into permgen space.

PAS for OpenEdge (based on Apache Tomcat) implements a hierarchy of class-loaders:
1. JVM
2. Apache Tomcat System: Used to load specific libraries found in the bin directory
3. Apache Tomcat Common: Normally not used, but PAS uses it to share common libraries

(common/lib) across multiple web applications to reduce permgen space allocation
4. Web application: Each web application instance has its own class-loader to service its

WEB-INF/classes and WEB-INF/lib directories

It is important to understand how web application class-loaders can inflate permgen memory
space allocation. For example, if one application is deployed five times (under different names),
or five different web applications are deployed one time, and they all contain the same set of
libraries and classes, the permgen space allocated is (library + class size) X 5. If those five web
applications were to use the Common class-loader to load those common sets of libraries and
classes, the resulting permgen space allocation would be (library + class size) X 1. The negative
aspect of using a Common class-loader is that all web applications must use the compatible
library and class versions. This is a common Java conundrum: Shared Java libraries for far
less memory utilization and updates in a single location, versus the flexibility of mixing and
matching various versions of the Java libraries.

Note: PAS for OpenEdge uses the Common class-loader for upward of 90% of all Java classes to
support its combination of web applications and use the least amount of permgen memory space.

2.3 Common PAS Web Server

At the core of PAS for OpenEdge is the common Progress Application Server (PAS) platform
that is used by all Progress web-based products and is capable of supporting most third-party
web applications that conform to the Java Servlet 3.0 standard. PAS is an adaptation of the
Apache Tomcat product that runs in a Java JVM and therefore is subject to the JVM tuning
of process threads, memory allocation and file/network I/O. Therefore, PAS and any of its
deployed OpenEdge and third-party web applications are configured, monitored and tuned like
any ordinary Apache Tomcat web applications running in a JVM. In addition to the information
found in this document, there is useful information on the internet that contains tips and
instructions for tuning the Apache Tomcat server and the JVM it runs in.

Measuring PAS memory and CPU resources should begin when all of its web applications are
loaded and their initial memory allocations are completed.

https://www.progress.com/

9 Contents

2.3.1 PAS Memory Usage

A PAS server consumes a certain amount of JVM memory according to the types of server
options configured, the number of deployed web applications and the number and size of
concurrent client requests.

Once a PAS instance has reached its JVM memory limits and you still need to support
additional web applications or client data loads, you need to consider starting additional PAS
instances and balance the deployment of additional applications and/or client load. This is an
advanced tuning subject and is not covered in this document.

The following sections provide a breakout of which operations consume memory and can be
manipulated to control JVM memory consumption.

2.3.1.1 PAS STARTUP

PAS consumes both heap and permgen space at startup time. The number of additional server
options started from within the Tomcat conf/server.xml configuration file controls permgen
allocation. The size of the various server-wide object pools for threads and client request
handling consumes the greatest amount of heap allocation.

2.3.1.2 LOADING AND STARTING WEB APPLICATIONS

After the PAS core server is loaded and initialized, it begins the serial loading and starting of the
deployed web applications. Loading and starting a web application consumes CPU, heap, and
permgen resources according to how the web application was implemented. Each web application
loaded has a dedicated class-loader in the Tomcat class-loader hierarchy. Web application
classes can be shared in permgen memory space if they are loaded by a class-loader that exists
higher in the class-loader hierarchy. If a class is not loaded by a higher level class-loader, it may
appear in permgen memory multiple times, once for each web application that references it.

PAS does not become fully available for client access until it completes the loading and starting
of all deployed web application. At the time when PAS is fully available, the web applications
are still not fully loaded. Incremental loading of web application classes and memory allocations
continues as client HTTP requests begin arriving for the web application to execute. It is
advisable that any CPU and memory measurements begin after a warmup period of client
traffic across all deployed web applications.

Note: PAS may fail to start due to lack of heap or permgen memory space.

https://www.progress.com/

10 Contents

2.4 PAS Startup Time

The time PAS requires to start and begin accepting client requests can be an issue in some
environments. This can be somewhat influenced by the number and type of web applications
deployed and by the individual web application configuration.

PAS loads web applications serially. When each web application begins loading, you can control
how many of the application servlets are loaded and started immediately rather than waiting
until the first client request is executed. Fewer servlets loaded and initialized at load time
means faster PAS loading of the next web application and faster time to complete the startup
sequence. This is balanced against the time required to service the initial client requests. What
is not loaded at web application startup is loaded on the first client request.

The servlet configuration loading can be controlled by the servlet load-on-startup element.
The default is to load when the first client requests arrive, which significantly slows down the
response time for the first client request after PAS has started. You can optionally have the
servlet loaded and started during PAS startup so that the first client request only has to load
the additional classes not accessed during web application load. This tactic speeds up the initial
client response time but causes PAS to have a longer startup time.

2.4.1 HTTP Client Connections and HTTP Requests

PAS manages all client network connections as HTTP/S protocol connections. Managing client
network connections includes handling:

• TCP/IP connections
• TCP/IP disconnections
• Message timeouts
• Terminating infrequently used client connections to enable servicing new clients

PAS initializes and maintains two resource pools to manage the influx of client connections and
HTTP requests:

• A pool of JVM threads to execute individual HTTP requests
• A pool of queued HTTP requests waiting for a JVM thread to execute in

When a HTTP client makes a socket connection, PAS waits a configurable amount of time
for the HTTP request to arrive before returning an error. When the client HTTP request is
received, it is either assigned directly to a JVM thread for execution or queued until a JVM
thread is available.

https://www.progress.com/

11 Contents

The size of the PAS thread pool directly affects how many client HTTP requests can be
executed concurrently. The size of the HTTP request queue dictates the maximum volume
of client HTTP requests before PAS begins returning errors to the clients. Tuning the TCP/IP
connections, HTTP request queue, and thread pools is key in managing client connections and
response times. Both pools consume memory space, and the size of the thread pool controls
how much stack region space is used and the size of the request queue determines how much
heap region space is used.

Apache Tomcat uses the default BIO connector to service client connections and HTTP
requests. A NIO connector is available, but was not considered stable enough at this time
(OpenEdge 11.5, 11.6) to become the default connector type. The NIO can be configured in PAS
manually, but its implementation requires more advanced tuning than BIO and can possibly
reduce performance if not done correctly. Later releases of Tomcat have worked out these
issues and the NIO has become the default in those releases (PAS for OpenEdge will support
later Apache Tomcat releases at some point in the future).

2.4.2 HTTP Request Execution

When a JVM thread is available from the PAS thread pool to execute a [queued] HTTP request,
a new HTTP request execution context is created and passed to the thread that then executes
it. The JVM thread is bound to that HTTP request context until it either ends successfully
or with a failure. Once the HTTP request is complete, the JVM thread returns to the pool to
service another client HTTP request.

Unlike the classic OpenEdge AppServer, handling of HTTP requests by PAS does not
inherently have the concept of “timeout” once a HTTP request begins execution. PAS does
make an Apache Tomcat valve available that monitors HTTP request execution times and to
log a message if any request runs over the configured amount of time.

PAS does incorporate configurable limits for how long a TCP/IP connection can be idle before a
HTTP request is received and how long it can be queued before a thread from the thread pool
is available. Tuning the HTTP request execution parameters affects how well PAS is able to
handle client connection load and spikes in client requests.

https://www.progress.com/

12 Contents

2.5 OpenEdge ABL Web Application

The OpenEdge [oeabl.war] web applications that run in PAS are standard Java web applications
that execute in the context of a HTTP request executing a PAS thread. Those web applications
bridge the gap between HTTP requests and ABL requests. Like all web applications, each
client HTTP request executes in a different thread from the PAS thread pool. ABL web
applications are then tuned for CPU, heap and permgen resources like any other web
application based on the level of client request activity and the data payload size.

A single ABL application installed into PAS for OpenEdge has a pool of ABL sessions shared
by one or more oeabl web applications to execute client requests. Oeabl web applications are
optimized so that only one instance of a class is loaded into permgen memory space at any one
time. So no matter the number of ABL applications and how many ABL web applications are
mapped to them, permgen space allocation remains as if only one web application were deployed.

Each oeabl web application hosts one or more of the following protocol transports, which can
be independently enabled/disabled:

• APSV HTTP tunneling of the OpenEdge Application server wire protocol (provided via an
AIA in a classic OpenEdge AppServer architecture)

• SOAP transport (provided via a WSA in a classic OpenEdge AppServer architecture)
• REST transport (provided via a REST Adapter in a classic OpenEdge AppServer architecture)
• WEB transport (provided via WebSpeed in a classic OpenEdge AppServer architecture)

The types of protocol transports enabled affects CPU and heap memory usage. Some
transports like SOAP require a lot of CPU and heap space to process each client HTTP request,
where other transports such as APSV consume far less. The REST transport lies somewhere
between APSV and SOAP with regards to CPU and heap memory consumption. The level of
activity in the transports and the designs and implementation of the ABL application determine
how much is consumed. Do not expect a formula that can predict how much OS CPU and
memory to provide—you must execute your ABL application and measure its impact on PAS
for OpenEdge.

Each web application employs a common ABL Session Manager to manage a pool of
ABL sessions. The Session Manager ABL session pool acts as a buffering and dispatching
mechanism for handling incoming client requests. The size of the pool dynamically scales up
and down according to the client load and its configuration settings, dynamically increasing and
decreasing the amount of heap space used. The ABL session pool queues client requests for
a certain period of time when the incoming client load outpaces the ability of the ABL sessions
to handle them. If a client request exists in the ABL session pool for too long, it is canceled and
an error is returned to the client. When both the ABL session pool is at its maximum and the
queue space is full, an error is immediately returned to the client.

https://www.progress.com/

13 Contents

An ABL application session pool manages a pool of one or more Multi-Session Agent (MS-Agent)
OS processes that hold the physical ABL sessions where client requests are executed. One MS-
Agent process is always created at PAS for OpenEdge startup, with additional MS-Agent processes
added if/when more ABL sessions are required to service client requests. The recommendation is to
maximize the use of a single MS-Agent and only scale to more than one if necessary.

The ABL session pool maintains a configurable number of local socket connections to each
MS-Agent process. The number of local socket connections dictates the maximum number of
ABL requests any one MS-Agent can execute concurrently.

You can configure the ABL session pool parameters to control its total size, the number of
queued client requests and the number of concurrent client requests that can be executed.

There is a side effect of the Session Manager queuing client requests and the ABL application
request execution times: PAS thread pool exhaustion and rejection of client requests. Both of
these contribute to longer running client requests, meaning that a PAS thread is bound to the
client request longer and is unable to be reused to handle other client requests. This requires
a balance of managing the PAS thread pool, versus the Session Manager ABL session pool,
versus the design and implementation of the ABL application.

2.5.1 Running OpenEdge Business Logic in a Multi-Session Agent Process

Because the ABL language cannot physically execute in the PAS JVM process, the physical
ABL sessions that execute client requests are hosted in external MS-Agents. A MS-Agent
process is constructed to host multiple ABL sessions that use a threaded architecture to
provide concurrent (single threaded) client request execution.

There is no relationship between the number of ABL sessions in a MS-Agent and the number of
client requests it can execute concurrently. Each ABL session has a small amount of memory for
language engine state and data storage, but that amount is relatively insignificant. The maximum
number of ABL sessions any single MS-Agent can host is closely related to the memory/file/
network resource consumption of the ABL application that runs in them. The memory footprint
of any single ABL session is determined by the summation of the ABL local variables, global
variables, temp-tables, number of database connections and the amount of r-code loaded.

The number of concurrent client requests any one MS-Agent can execute concurrently is
implied by, but not physically tied to, the OS process threads used to execute them. Rather, the
maximum number of concurrently executing client requests is based on the lesser of:

1. The maximum number of local socket connections configured to exist between the ABL
Session Manager and the MS-Agent

2. The number of ABL sessions that are free [i.e. idle] to execute client requests

https://www.progress.com/

14 Contents

The relationship between Session Manager network connections and the number of physical
ABL sessions in a MS-Agent is relative to the ABL application implementation. If the
application is implemented to use [stateful] bound client connections the ratio of ABL sessions
to local sockets is n-to-1. When the ABL application uses [stateless] unbound client connections
the ratio of ABL sessions to local sockets is closer to 1-to-1.

2.5.2 Monitoring OpenEdge Web Applications and Multi-Session Agents

Monitoring PAS for OpenEdge involves using its extensive set of metrics gathering and query
operations that are available via the PAS JMX console, and optionally via its OpenEdge remote
administration web application (that is used by OpenEdge Explorer/Management). PAS for
OpenEdge relies on lower overhead metrics services rather than the heavyweight logging used
by a classic OpenEdge AppServer. In many cases you will not find the same logging messages
in the PAS for OpenEdge log files that you found in the classic OpenEdge AppServer.

This document does not teach you how to use the PAS for OpenEdge metrics gathering and
queries—that information can be obtained from the OpenEdge product documentation. This
document points out general information you can gather and query for:

• Listing of sessions, clients and MS-Agent connections
• Listing of hung clients (that exceeded a specified amount of time)
• List the currently executing client ABL requests
• Reset metrics counters
• Runtime Session Manager metrics:

• Concurrent client metrics
• Connection timeouts
• Request queue counts
• Request counts
• Read/write counts

• MS-Agent ABL session metrics, per ABL session
• Start & end times

• APSV, REST, WEB and SOAP transport metrics
• Request counts
• Success/failure counts

https://www.progress.com/

15 Contents

3юTuning PAS for OpenEdge

After gaining a basic understanding of the PAS for OpenEdge environment in which your
ABL application will execute, you are now ready to begin the tuning process. Tuning PAS for
OpenEdge begins with installing the production version of the PAS for OpenEdge product.
The PAS for OpenEdge development product applies throttles that are not conducive to
performance tuning. After the production server product is installed, follow the normal steps to
create a PAS for OpenEdge instance with your ABL application installed and configured. This
instance is the target of your tuning process.

Note: You do not tune the core PAS server files located in DLC/servers/pasoe!

3.1 Tuning Goals and Common Steps

The overall goal for tuning a PAS for OpenEdge instance is to support an ABL application that
meets the end customer requirements for concurrent client requests, response times and OS
CPU and memory resource consumption. Achieving this goal is an iterative process starting in
your ABL application development process where you determine the initial PAS for OpenEdge
configuration defaults that fit your ABL application target deployment. More refined tuning then
occurs at the end customer site where the OS CPU, memory and file system comes into play.

The tuning process typically follows this sequence of steps:
1. Tune the PAS server
2. Tune the OpenEdge (and any third-party web applications)
3. Tune the OpenEdge Multi-Session Agent

The following is a general set of steps to get started:

1. Deploy the [OpenEdge] web applications that make up your ABL application to the PAS
for OpenEdge instance, increasing the permgen memory space as needed until all web
applications start cleanly.

2. Determine and set the maximum number of ABL sessions any one MS-Agent can support
based on your ABL application memory allocation of variables, r-code, buffer space, etc.

https://www.progress.com/

16 Contents

3. Calculate the maximum ABL session pool size where the maximum number of ABL
sessions across all MS-Agents is based on the sum of:

• Estimated maximum number of concurrently bound client application connections
• Estimated maximum number of concurrently executing unbound client requests

4. Set the maximum number of MS-Agents as (session-pool-size / maximum sessions
per MS-Agent) + 1. The +1 is for handling abnormal load spikes.

5. Set the maximum local socket connections any one MS-Agent can have. The goal is
to maximize the number of concurrently running client requests any one MS-Agent can
process. The hardware CPU resources and the level of I/O switching of the individually
executing ABL requests influence the value. This number needs to be <= the maximum
number of ABL sessions per agent.

6. Set the idle resource timeouts to lower the resource load on the server without causing
MS-Agent or ABL session thrashing. These settings are directly related to how long it takes
an ABL session to be started in your ABL application.

7. Set the number of initial ABL sessions a MS-Agent starts when it is created. This
number should be kept to a minimum as it affects how long it takes the PAS for OpenEdge
server to become available to handle client load. The goal is to initialize enough ABL
sessions to handle the initial client load and gradually scale up (trading off initial client
response times) to the PAS for OpenEdge instance full capacity.

Keep in mind that the maximum capacity of a single PAS for OpenEdge instance is finite for
any given combination of ABL application and OS hardware. Once you reach a single PAS for
OpenEdge instance limit within the environment it runs in, and you have still not met the end
customer requirements, you are then in a position where you need to either increase the OS
hardware capacity or run additional PAS for OpenEdge instances and load balance. The scaling
of PAS for OpenEdge instances is not covered in this document.

3.2 Tuning the PAS Server

The most important aspect of tuning your PAS for OpenEdge instance is the JVM stack/
heap/permgen memory allocations and the garbage-collection. The memory configuration
ultimately determines how many and what type of web applications the PAS for OpenEdge
instance can have deployed, and the number of clients it can support for those web applications.

https://www.progress.com/

17 Contents

The tuning process involves an iterative process of monitoring PAS behavior for a given client
and web application configuration, changing configuration values and then returning to the
monitoring phase. You can expect to control the following attributes from PAS configuration:

• JVM stack, heap and permgen memory allocations
• JVM garbage collection cycles and overhead
• The number of HTTP client connections
• The size of the thread pool used to execute HTTP client requests
• Client connection timeout (without a HTTP request)
• The queue size for parking HTTP client requests until a thread is available from the pool
• Socket buffer size
• HTTP compression for SOAP and REST clients
• Turning Tomcat optional features on/off
• Determining which web applications will be deployed to which PAS for OpenEdge instances

JVM configuration parameters exist in the PAS instance /conf/jvm.properties file as Java
system properties. You manually edit this file to make changes.

PAS configuration parameters exist in the PAS instance /conf/catalina.properties file as
Java system properties where they are easier to manage from local scripts and remote
administration tools. Those Java system property values are used as variable values in the PAS
/conf/server.xml file. Normally, you do not edit the PAS /conf/server.xml file as it may cause
the server to not start. We recommend that you use the /bin/tcman.{bat|sh} command line
utility or a text editor to maintain the /conf/catalina.properties file.

The Java distribution, commercial tools or open-source products can be used to monitor
PAS resources and operations. There are a number of these products available that provide
excellent viewing of the web servers behavior.

3.2.1 Tuning the JVM Memory and Garbage Collection

PAS process memory and garbage collection are a critical point in your tuning strategy. PAS
(Apache Tomcat) reacts badly when either the heap or permgen memory regions run low on
space. To keep memory available to the JVM, its garbage-collector needs to run periodically
to reclaim unused space. Every time the garbage collector runs it stops all of the other JVM
threads, such as client HTTP request execution threads. If the garbage-collector runs too
infrequently, large amounts of unusable memory may accumulate and the collection process will
take a long time resulting in spikes in client response times. If the garbage-collection process
runs too often you lose CPU cycles while checking the entire memory space and you will see
client response times elongate due to constant CPU drain by garbage-collection cycles.

https://www.progress.com/

18 Contents

The goal is to ensure PAS for OpenEdge has sufficient heap and permgen space allocated to
handle the loading of web applications, web application memory allocations, concurrent client
requests, and to reduce garbage-collection processing time.

The things that influence memory consumption are:
• The number and type of web applications deployed
• The size of the HTTP request thread pool
• The number of concurrent requests and the data size of those requests

The relevant JVM properties configured in the /conf/jvm.properties file are:

Property Default Description

-Xms<size> 512m Initial Java heap size

-Xmx<size> 1024m Maximum Java heap size

-Xss<size> 1024k Java thread stack size

-XX:PermSize 64m Initial permgen memory size

-XX:MaxPermSize 128m Maximum permgen memory size

-XX:NewSize 64m Initial space used for short duration objects and indirectly how
often garbage collection runs

-XX:MaxNewSize 128m Maximum space used for short duration objects

-XX+DisableExplicitGC — Disable explicit garbage collection

Tuning tips:
• Reduce the frequency of garbage collection by starting the JVM with a larger maximum

heap memory space (-Xmx)
• Reduce repeated reallocation of heap memory by setting the initial heap memory space

equal to the maximum amount (-Xms == -Xmx)
• Reduce repeated reallocation of permgen memory by setting the initial size equal to the

maximum size (-XXPermSize == -XX:MaxPermSize)
• Carefully lower the JVM stack size (-Xss) to save process memory for heap and

permgen allocations
• Increase permgen space when PAS stops due to an out-of-permgen-space error

The default PAS for OpenEdge configuration provides a reasonable starting point, but due to
the influences of the combination of OpenEdge and third-party web applications, they can only
be considered as a starting point.

https://www.progress.com/

19 Contents

3.2.2 Tuning the PAS Client Network Connections

Tuning the PAS client network connections involves controlling the HTTP client TCP/IP
connections. Many of the network connection properties are defined as Java system properties
in the PAS /conf/catalina.properties file and have “psc.as.” name prefixes. These properties
can be managed using the tcman command line utility (recommended) or a text editor. Each
named “psc.as…” Java system property in /conf/catalina.properties is related to an Apache
Tomcat a /conf/server.xml file xml element or attribute. You can find that relationship using the
command “tcman.{bat|sh} help psc.as.xxxxxx”.

OpenEdge recommends that you do NOT edit the PAS instance conf/
server.xml file UNLESS an Apache Tomcat configuration attribute that is
not supplied via a “psc.as” configuration property is needed. If a new Apache
Tomcat configuration attribute is required, we recommend adding the attribute
to the conf/server.xml file using a “psc.as.” property and adding that property
to the conf/catalina.properties file where it can be remotely managed by
administration tools and automated scripts.

PAS client network connections are a server-level resource and exist for each open HTTP/
HTTPS/AJP13 port [connector]. You cannot control client network connections per web
application. Your primary goal is to ensure that PAS for OpenEdge has enough network
connection capacity to handle the total client load for all deployed web applications, inclusive of
OpenEdge web applications and any additional external third-party web applications.

Tuning tips:
• Coordinate the maximum client connections to be at, or larger than, the size of the PAS

thread pool and the number of queued HTTP client requests.
• Do not attempt to enable HTTP message compression for HTTP-connected OpenEdge

clients by adding its mime-type to psc.as.compress.types property—it will not work.
• The HTTP-connected OpenEdge clients use HTTP POST messages with a maximum

size of 8KB, so the maximum psc.as.msg.maxpostsize is not an issue. If you are using
REST or SOAP clients with very large ProDataSet transfers, this property setting may
become important.

The secondary goal is to modify the HTTP message-handling if the default settings do not
allow very large message/response data exchange required by some web applications.

https://www.progress.com/

20 Contents

HTTP connection properties:

Property Default Description

psc.as.HTTP.connectiontimeout 20,000 The max time in milliseconds between a TCP connection
and the appearance of a HTTP or HTTPS message

psc.as.HTTP.maxconnections -1 Max client connections on the HTTP network port

psc.as.HTTP.compress on Turn HTTP compression support “on” or “off”

HTTPS connection properties:

Property Default Description

psc.as.HTTPs.maxconnections -1 Max client connections on the HTTPS network port

psc.as.HTTPs.compress on Turn HTTPS compression support “on” or “off”

HTTP message properties:

Property Default Description

psc.as.msg.timeout 10,000 Timeout for async requests in milliseconds

psc.as.msg.maxpostsize 2097152 The maximum size of a POST HTTP message in bytes

psc.as.msg.socketbuffer 9000 The HTTP message buffer size in bytes

psc.as.compress.min 2048 The minimum message size, in bytes, enables
compression for HTTP responses

psc.as.compress.types

text/html
text/xml

text/javascript
text/css

A comma separated list of which mime types can be
HTTP compressed

https://www.progress.com/

21 Contents

3.2.3 Tuning the PAS HTTP/HTTPS Request Processing

PAS handles all HTTP client requests, including OpenEdge, REST, SOAP and others. Tuning
concurrent client request handling involves managing the PAS thread pool and the HTTP
request queues. The goal is to tune the thread pool size to handle the maximum number
of concurrently executing client requests across all web applications, within the bounds
established by the JVM configuration.

Property Default Description

psc.as.executor.maxthreads 300 Maximum number of threads that can be created to
execute client requests

psc.as.executor.minsparethreads 10 The minimum number of threads retained in the pool to
service client requests

psc.as.HTTP.maxqueuesize 100 Max queue size for parking HTTP connection requests
until a thread from the thread pool is available

psc.as.HTTPs.maxqueuesize 100 Max queue size for parking HTTPS connection requests
until a thread from the thread pool is available

Tuning tips:
• Each thread in the pool allocates memory from the JVM heap space. Having too many

threads detracts from the amount of JVM memory available to the applications and also
from the ability of PAS to handle concurrent client requests.

• Another factor in setting the thread pool properties is PAS startup time. The larger the number
of threads initially started (minsparethreads), the longer it takes PAS to start and be available for
clients. Not starting enough threads, or keeping too few threads active results in irregular client
response times as new threads are created and initialized before they can be used.

• Monitoring for determining these values is generally obtained during peak and slack
client activity times. Look for client errors due to overloaded queues or thread pool
exhaustion as indicators that values need to be increased. Look for irregular client response
times that indicate the minimum retained thread count is not sufficient.

3.2.4 Tuning the PAS Server Features

PAS comes preconfigured with certain server features and HTTP request filters (referred to
as valves) that are executed on each client request. While the PAS defaults work for most
situations, some server features and/or filters can be turned off in the right situations to adjust
security or HTTP request processing time. The recommended method of controlling server
options is to use the tcman command line utility:

tcman.{bat|sh} feature <feature-name>={on|off}

https://www.progress.com/

22 Contents

Feature-name Default Description

SecurityListener off Require admin rights to start the server

HTTP on Accept HTTP client connections

HTTPS on Accept HTTPS client connections

AJP13 off Turn on connector from HTTPd/IIS servers

Cluster off Enable Tomcat clustering

RemoteHostValve on Filter client access by DNS host name

RemoteAddrValve on Filter client access by IP address

SingleSignOn on Enable Tomcat SSO across web applications

AccessLog on Track client HTTP requests and responses

CrawlerSessionManager on Reduce session pool impact from Web Crawler
applications

StuckSessionValve on Report suspected hung HTTP requests

Tuning tips:
• The StuckSessionValve applies to all deployed web applications, including the OpenEdge

ones that execute the ABL language requests. This setting can result in false-positives, so
interpret the information as informational and not an error.

• The CrawlerSessionManager valve protects against large numbers of HTTP sessions
being started by external web page indexers, which use up a lot of heap space. For
internet-facing PAS for OpenEdge instances, we recommend that you leave the feature on.
If you have intranet PAS for OpenEdge instances, you may turn the feature off.

• The AccessLog feature uses processing time to format and write the tracking of HTTP clients.
Its value to an enterprise is subjective and it should be turned off unless deemed necessary.

• The SingleSignOn (SSO) feature allows users to log into the PAS for OpenEdge instance
one time for all web applications in a certain realm. Both the Apache Tomcat management
and OpenEdge remote administration web applications share the same realm and
benefit from this SSO. OpenEdge web applications (oeabl.war) can also benefit from this
functionality if they are configured for container security. If your production PAS for
OpenEdge instance does not deploy those administration web applications or needs to
benefit from SSO, disable this feature.

• PAS for OpenEdge instance clusters are advanced web server architectures and should
be left turned off until necessary to support your ABL application using multiple PAS for
OpenEdge instances.

https://www.progress.com/

23 Contents

• The SecurityListener feature is seldom used but is provided when needed for best-
practice production security configurations. Only enable this feature when you are sure
PAS for OpenEdge instances are deployed using the required OS file/directory permissions.

• The RemoteHostValve and RemoteAddrValve default configurations allow all
host names and addresses, so their overhead is small. Both DNS and IP addresses are
considered unreliable for identifying internet clients so you may turn these off if PAS for
OpenEdge is internet facing. They may be of more use when PAS for OpenEdge is running
on what the end user site considers a secured intranet.

3.3 Tuning the OpenEdge Web Applications and MS-Agents

After you tune PAS for handling client requests, you can begin working with the OpenEdge
web applications and MS-Agent processes. The types of information found in this section of
the document includes:

• Controlling the size of the ABL Session Manager ABL session pool
• Managing resource consumption within a Multi-Session agent process
• Managing concurrent ABL request execution
• Managing PAS for OpenEdge startup time

The design and implementation of your ABL application affects the PAS and all web
applications deployed in it. In most cases the ABL application design and implementation
cannot, and should not, be changed. Your goal is to strike a balance between PAS for
OpenEdge instance startup times, supporting client requests to your ABL business logic and
the response time to those clients.

One of the realities in getting the most performance from your PAS for OpenEdge instance is
realizing that OpenEdge web applications and the MS-Agent process execution of client
requests is gated by your tuning of the PAS they operate in. For example, it does not matter if
you configure OpenEdge to handle 400 concurrent client requests if the PAS it runs in can only
manage supporting 200 concurrent client requests—the net maximum client support will be 200.

Another reality is that the execution speed of the ABL language engine and the OpenEdge
RDBMS storage engine is tied to the speed of the OS, the CPUs and the file system, not PAS
for OpenEdge. You cannot tune PAS for OpenEdge to execute the same ABL r-code and data
storage operations to run faster than a batch process or a classic OpenEdge AppServer does. It
is true that shared-memory (i.e. self-service) OpenEdge RDBMS storage engine connections are
much faster than those of a classic OpenEdge AppServer, but the speed increase is due to the
shared-memory database connection implementation and not the database storage engine itself.

https://www.progress.com/

24 Contents

The ABL application ABL session pool is managed by the SessionManager subsystem, which
is common to all of its configured OpenEdge web applications. How the SessionManager
manages the ABL session pool, its pool of MS-Agents, and the local network socket
connections, is controlled through properties found in the PAS for OpenEdge instance /conf/
openedge.properties configuration file. This file is managed by using the PAS for OpenEdge
instance /bin/oeprop.{bat|sh} command line utility, OpenEdge Explorer/Management (if the
OpenEdge remote administration web application is installed), or via a simple text editor.

Property [AppServer.SessMgr] Default Description (per ABL Application)

numInitialAgents 1 Number of MS-Agent processes to create at server startup

maxAgents 10 Maximum number of MS-Agent processes that can exist

maxABLSessionsPerAgent 200 Maximum number of ABL sessions per MS-Agent process

maxConnectionsPerAgent 16 Maximum number of network connections between Session
Manager and an MS-Agent

requestWaitTimeout 15,000 Maximum time, in milliseconds, that a client request will be
queued waiting for an ABL session before an error is returned

idleSessionTimeout 300,000 Maximum time, in seconds, that an ABL session can remain
idle before it is shut down

idleAgentTimeout 300,000 Maximum time, in seconds, that a MS-Agent can remain idle
before it is shut down

agentListenerTimeout 300,000 Maximum time the SessionManager will wait for an MS-Agent
to report “started” before an error is raised

idleConnectionTimeout 300,000 Maximum time, in seconds, that APSV client can remain idle
before it is shut down

Property [Appserver.Agent] Default Description (per MS-Agent)

numInitialSessions 5 Number of ABL sessions started at MS-Agent startup time

Note: Full property descriptions are located in the PAS for OpenEdge instance /conf/
openedge.properties.README file.

How the OpenEdge properties are set depends, to some extent, on the operating model
implemented by your ABL application:

1. Stateful (i.e. classic OpenEdge AppServer state-reset/state-aware)
2. Stateless (i.e. classic OpenEdge AppServer stateless/state-free)

https://www.progress.com/

25 Contents

Why these application model implementations affect property settings requires an
understanding of how the ABL SessionManager manages the ABL session pool, the MS-
Agents where the physical ABL sessions run in and how ABL sessions are selected to execute
client requests.

The first priority of the SessionManager is to conserve system resources by maximizing the
pool of ABL sessions and scaling a larger number than is needed to handle the current client
load. Where the classic OpenEdge AppServer used a round-robin scheduler to distribute client
requests across all existing ABL sessions, PAS for OpenEdge uses a find-first-free scheduler.
For example, when a classic OpenEdge AppServer handled requests from a single client, all of
the running ABL sessions were used consuming OS memory and file system handles linearly.
PAS for OpenEdge uses only one ABL session, consuming only one session’s worth of OS
memory and file system handles.

For informational purposes, the following is a general description of how the SessionManager
implements its find-first-free scheduling of client requests using MS-Agents, local socket
connections and ABL sessions:

1. Receive a client request from an oeabl web application transport.

2. The first MS-Agent in the list of MS-Agents is set as the current agent.

3. If the current MS-Agent has an unused socket and a free ABL session, use it to execute the
client request:

• During this time the local socket is placed into an in-use state and the free ABL session is
bound, where neither is available for use by other client requests.

• When the client request ends, the ABL session is marked as free if a persistent procedure
has not been executed and the ABL application code has not set a bound-client condition.
The local socket returns to the unused state.

4. If the number of current MS-Agent local sockets is < max, and any ABL sessions are free,
create a new socket. Go to #3.

5. If another MS-Agent exists in the MS-Agent list, set it as the current agent. Go to #3.

6. If the max number of MS-Agents has not been reached, create a new MS-Agent, add it to
the end of the MS-Agents list, make the new MS-Agent the current agent and go to #3.

7. Queue the request if the maximum request queue size is not exceeded. Queued requests are
de-queued and executed as soon as a MS-Agent socket connection becomes available.

https://www.progress.com/

26 Contents

A classic OpenEdge AppServer has four modes of operation providing two distinct application
architecture models: stateful, in which one ABL session exists for each application client and
stateless, in which the ABL sessions are shared by all application clients. PAS for OpenEdge
provides support for both models, where all client requests are handled stateless and the ABL
application can, at its direction, temporarily bind the client and operate in a stateful manner.
The implications of this translate into how many ABL sessions and MS-Agents to configure.

3.3.1 OpenEdge ABL Session Pool and Request Scheduling

This section provides information that enables you to control PAS for OpenEdge startup times,
ABL sessions for executing client requests and the concurrent client request execution.

PAS FOR OPENEDGE STARTUP TIME AND HANDLING INITIAL CLIENT REQUESTS

The SessionManager must start a minimum of one MS-Agent when a PAS for OpenEdge
instance is started. During an MS-Agent startup process, the SessionManager stalls until it
is gets a call-back connection from the SessionManager to report its startup status and any
subsequent notifications. The SessionManager stalls for a agentListenerTimeout period
before it considers the MS-Agent either unresponsive or unable to start.

PAS for OpenEdge SessionManager uses the property numInitialAgents to begin building a
list of MS-Agent processes. The MS-Agent process uses the numInitialSessions property at
startup time to begin building its free idle list of physical ABL sessions. For example, one MS-
Agent with five initial ABL sessions yields an initial ABL session pool size of five. Starting three
MS-Agents with five initial ABL sessions each yields an initial ABL session pool size of 15.

Tuning tips:
• The longer the agentListenerTimeout property is set, the longer the PAS for OpenEdge

instance takes to start when for any reason the MS-Agent process has startup failures. Too
short a time and the PAS for OpenEdge instance may start sooner but the SessionManager
may consider the MS-Agent unavailable.

• Setting the number of MS-Agent processes and physical ABL sessions to start at
initialization time is dependent on how long the ABL application implementation takes
to run its startup procedure. A larger number takes more time, which causes the PAS for
OpenEdge instance to not handle incoming client requests for a longer period of time. Too
few and the first client requests handled by PAS for OpenEdge will have slow response
times while new ABL sessions and/or MS-Agent processes are started.

https://www.progress.com/

27 Contents

SCALING MS-AGENTS UP AND DOWN AND PHYSICAL ABL SESSIONS

After initial startup the SessionManager automatically scales the number of ABL sessions
according to the client load. SessionManager scaling begins with adding ABL sessions to the
first MS-Agent process until its maxABLSessionsPerAgent limit is reached. If additional ABL
sessions are required to meet client demand, the number of physical ABL sessions are scaled
up in the next MS-Agent process until its maxABLSessionsPerAgent limit is reached. This
scaling process continues until the maxAgents limit is met, at which time the SessionManager
begins to return no session available errors to its clients.

Tuning tips:
• Setting the MS-Agent maximum ABL sessions property is related to the OS process

memory and/or file limits. Each ABL session that runs your ABL application code consumes
memory and other process resources. Do not set the maximum ABL sessions to a higher
number than the OS process supports.

• The best performance is achieved by keeping the number of MS-Agents to as few as
possible by maximizing the number of ABL sessions and concurrent client requests per
MS-Agent.

• The more MS-Agents that are started, the higher the overhead in dispatching incoming
stateless client requests for execution. The ideal case for stateless ABL application models
is one MS-Agent and a few ABL sessions.

• Scaling to handle more MS-Agent processes is normal when the ABL application
supports stateful client requests. Overhead for stateful clients is low because they are
directly dispatched for execution to an exact ABL session within an exact MS-Agent,
without the need to find an idle ABL session.

As stated above, the SessionManager goal is to conserve resources. It does this by periodically
scanning all of the MS-Agent and physical ABL sessions looking for ones that have been idle
beyond the idleAgentTimeout and idleSessionTimeout periods respectively. When an idle
MS-Agent or physical ABL session exceeds the idle time, it is removed from service and shut
down gracefully.

Tuning tips:
• If your client traffic peaks and valleys often, this may lead to thrashing where client

response times suffer because MS-Agents and ABL sessions are harvested too soon and
the client must wait for new ones to be started up.

• If you see from the OpenEdge metrics too many MS-Agent/ABL session startups and
idle resource shutdowns, lengthen the time they can remain idle before being harvested.

• You also have the option of manually controlling the harvesting of idle MS-Agents
and ABL sessions. To disable the automatic idle resource harvesting, configure the
idleResourceTimeout property to 0 (zero) and use the JMX or remote OpenEdge
administration plugin to manually harvest idle resources.

https://www.progress.com/

28 Contents

MANAGING CONCURRENT REQUEST EXECUTION

An MS-Agent can only concurrently execute the same number of client requests as it has
local socket connections between the SessionManager and itself. The SessionManager
automatically scales the number of local socket connections to MS-Agents up to the
maxConnectionsPerAgent limit while looking for a free (idle) ABL session to execute a client
request. A byproduct of managing the number of local socket connections is the MS-Agent
management of its pool of OS threads reserved for executing client requests. Each time a new
local socket connection is created, a new OS thread is started to execute client requests arriving
via that socket. Each time a local socket connection is closed, an OS thread from the pool is
stopped. Once a local socket connection is created and an OS thread exists to execute client
requests, it can be used by any client request regardless of the bound-client state.

Tuning tips:
• Do not set the maximum number of local socket connections higher than the maximum

number of physical ABL sessions.
• Do not set the maximum number of local socket connections higher than the maximum

number of ABL sessions.
• Do not set the sum of local socket connections for all MS-Agents larger than the PAS

thread pool for executing HTTP requests as they will never be used.
• The choosing of an appropriate number of local socket connections is closely tied to

the implementation of the ABL application. If the ABL application uses high levels of file/
database/socket I/O, you need to increase the number of socket connections and ABL
sessions because many of them will have high idle times where CPU resources can be used
for executing CPU-bound ABL language statements.

Note: The starting and stopping of local socket connections and the OS threads in its thread
pool is not related to the startup/shutdown of physical ABL sessions.

https://www.progress.com/

Progress and Progress OpenEdge are trademarks or registered trademarks of Progress Software
Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other countries. Any other
trademarks contained herein are the property of their respective owners.

© 2016 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.
Rev 16/09 | 160917-0023

About Progress

Progress (NASDAQ: PRGS) is a global leader in application development, empowering the digital
transformation organizations need to create and sustain engaging user experiences in today’s evolving
marketplace. With offerings spanning web, mobile and data for on-premises and cloud environments,
Progress powers startups and industry titans worldwide, promoting success one customer at a time.
Learn about Progress at www.progress.com or 1-781-280-4000.

About OpenEdge

Progress® OpenEdge® is an innovative application development platform that enables you to build and
protect beautiful on-premises, cloud or hybrid applications, and deploy them across any platform or
mobile device. OpenEdge meets all your digital business needs, delivering total data management for
any data source with enhanced performance, minimal IT complexity and the industry’s lowest total cost
of ownership. Business apps built with OpenEdge are reliable, scalable and require fewer administrative
resources than those built using alternative platforms.

With the information presented in this whitepaper,
you should now have a basic understanding of where
to begin monitoring and tuning the execution of PAS
for OpenEdge to achieve optimal performance for
your ABL application. You can expect to establish a
baseline PAS for OpenEdge configuration for your
ABL applications and then adjust it as needed per
installation. If you have questions regarding your PAS
for OpenEdge installation, please contact us.

CONTACT US

https://www.progress.com/
https://www.progress.com/company/contact

	3юTuning PAS for OpenEdge
	3.1	Tuning Goals and Common Steps
	3.2	Tuning the PAS Server
	3.2.1	Tuning the JVM Memory and Garbage Collection
	3.2.2	Tuning the PAS Client Network Connections
	3.2.3	Tuning the PAS HTTP/HTTPS Request Processing
	3.2.4	Tuning the PAS Server Features

	3.3	Tuning the OpenEdge Web Applications and MS-Agents
	3.3.1	OpenEdge ABL Session Pool and Request Scheduling

	2	Server Architecture
	2.1	PAS for OpenEdge and OS Process Limits
	2.2	Java Virtual Machine (JVM)
	2.2.1	Monitoring the JVM
	2.2.2	JVM Memory Management
	2.2.3	JVM Class Loaders

	2.3	Common PAS Web Server
	2.3.1	PAS Memory Usage

	2.4	PAS Startup Time
	2.4.1	HTTP Client Connections and HTTP Requests
	2.4.2	HTTP Request Execution

	2.5	OpenEdge ABL Web Application
	2.5.1	Running OpenEdge Business Logic in a Multi-Session Agent Process
	2.5.2	Monitoring OpenEdge Web Applications and Multi-Session Agents

	1	Introduction

