
©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.
©

 2
01

7
Pr

og
re

ss
. A

ll
R

ig
ht

s
R

es
er

ve
d. SSL/TLS Communication

in Progress OpenEdge
WHITEPAPER

Progress / OpenEdge

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Table of Contents
1. What is SSL/TLS? / 3

2. SSL/TLS in OpenEdge applications / 3

3. Scope of this whitepaper / 4

4. General SSL/TLS concepts / 4

SSL/TLS Handshake / 4

SSL Protocol and Cipher Suites / 6

Digital Certificate / 8

5. Creating a Digital Certificate / 8

Generating Public/Private Key Pair / 8

Signing the Certificate / 9

Combining a CA issued digital certificate with the private key (for a server) / 11

Importing the ROOT CA certificate in Client Cert Store (for clients) / 12

6. SSL Vendors in OpenEdge / 15

7. Cipher Suite Names used for Configuration in OpenEdge / 16

8. SSL protocols and Default/supported ciphers used in OpenEdge Client Server components / 17

Changing the default protocol and ciphers for OpenEdge Server Components / 20

Changing the default protocol and ciphers for OpenEdge Client Components / 21

Changing the default protocol and ciphers for Adapters and OpenEdge Management / 22

9. OpenEdge and known vulnerabilities / 23

10. Enabling and configuring SSL For Server components / 24

OpenEdge AppServer / 24

OpenEdge Database / 25

Progress Application Server for OpenEdge / 26

11. Configuring OpenEdge Clients for SSL communication / 28

ABL Client / 28

Java OpenClient / 30

.NET OpenClient / 31

Browser / 31

12. Debugging Tools / 33

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 3

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

1. What Is SSL/TLS?
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), both of which
are frequently referred to as SSL, are cryptographic protocols that provide communications
security over a computer network.

SSL is a communication protocol used when a high degree of peer authenticity and
encryption, the scrambling of data, is necessary. Additionally, SSL enables servers on either
end of a connection to identify and authenticate or prove their identity. This enables secure
communication effectively preventing the interception and tampering of sensitive data. That is
why, SSL is the network protocol used by, for example, banks or other financial institutions to
transfer credit card or user account information.

2. SSL/TLS in OpenEdge
Applications

You can use SSL/TLS communication between OpenEdge clients and servers, including
Progress WebClient to communicate with OpenEdge as well as non-OpenEdge applications.
You can also use SSL with HTTP (Hyper Text Transfer Protocol). When the two are used
together, the resultant protocol is referred to as HTTPS, that is HTTP with added security.

SSL entails overheads when compared to unencrypted Transmission Control Protocol (TCP)
connections. Establishing an SSL connection is a complex process in which initially there is
an exchange of ten or more messages, some of which are highly encrypted. These messages
are small, and the exchanges take place relatively quickly. However, when these numbers are
multiplied by a significant number of application users, the application’s performance is affected.

It is a best practice to use SSL/TLS only when necessary within an application. Typically,
you will not implement SSL throughout your application. A good example of limited
implementation of SSL is Amazon.com. You could spend hours on this web site and never get
to see the use of SSL (notice that only HTTP is used in the URL). Only when you are in the
act of finalizing a purchase and relaying your personal or credit card information, does the
protocol switch to HTTPS. At that point, only a tiny amount of data is exchanged, effectively
curbing overheads for the Amazon servers.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 4

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

3. Scope of This Whitepaper
Should you choose to implement SSL/TLS in your application, you must understand various
aspects of communication such as protocols, ciphers, and digital certificates that you will need
to configure. In recent years, there have been several security vulnerabilities reported in the
industry as a result of which, there has been a need to switch to newer and more secure SSL/
TLS versions. Consequently, you now need to configure SSL/TLS more than you did in the
past, and the configuration steps can be complex if not well understood.

This whitepaper will help you understand how to configure OpenEdge clients and servers to
use SSL/TLS communication to mitigate known vulnerabilities.

Note: It is recommended that you refer to the OpenEdge documentation for configuration details.

4. General SSL/TLS Concepts
This section touches on some general and important concepts of SSL/TLS communication.
They are not specific to OpenEdge. The concepts form the foundation for effectively
configuring your SSL/TLS communication channels. If you are familiar with these terms and
concepts, you may skip this section.

SSL/TLS Handshake

SSL communication begins with a handshake routine that first establishes a TCP/IP
connection. There is an exchange between a client and a server of about ten messages after
which the communication is deemed to be secure. This exchange of messages is the SSL/TLS
handshake process.

Though an explanation of the entire SSL/TLS handshake process is not in the scope of this
whitepaper, it is recommended that you understand the salient points of this process. The
following diagram shows a simplified SSL/TLS handshake process.

https://www.progress.com/
https://www.progress.com/openedge
https://documentation.progress.com/output/ua/OpenEdge_latest/

Progress / OpenEdge 5

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Public Key Infrastructure (PKI) or Asymmetric Key Cryptography

The initial exchange of messages between a client and a server is based on Public Key
Infrastructure (PKI) cryptography using an assymetric key. PKI uses a pair of mathematically
related keys known as public and private keys (that are not identical, therefore asymmetric). The
public key is a shared key whereas the private key is known only to the party that generates
the key. A client can encrypt a message using the server’s public key, and then the server can
decrypt the message using its private key. PKI is considered secure, but it slows down the
encryption/decryption process. It is thus used for transporting of a session key which is a shared
secret between a client and the server once the SSL session is established. There are a number
of algorithms that use PKI for encryption/decryption, such as RSA, DH w/RSA, and ECDHE.

Non-Secure Transport connection

Client Server
1. Client Hello - Client
sends supported SSL
version, ciphers suites etc.

2. Server Hello - Server
sends compatible SSL
protocol & cipher & his
(server) certificate
containing its public key
(Not private!)

3. Client Validation: Client
checks crypto parameters &
validates server public key
(checking signature from
trusted CA from its certificate
store), and successfully
authenticates server.
OE client uses DLC/certs as
certificate store.

5. Session Key Exchange
Client generates session keys
from pre-master secret.

5. Session Key Exchange
Server generates session keys
from pre-master secret.

4. Key Exchange - Client
creates a pre-master secret
for the session, encrypts it
with Server’s public key &
sends the encrypted
pre-master secret to Server

6 . SSL Session Established
Messages encrypted with
shared secret key are
exchanged between client
& server.

SSL Handshake

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 6

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Symmetric Key cryptography

Once the SSL session is established, message exchange is based on the session key, a symmetric
key, rather than a PKI key, that is a shared secret between the client and the server. The
encryption/decrytion process is faster using symmetric key cryptography. It must be ensured
that the symmetric key is not compromised. The handshake process ensures that the same
session key is generated by both client and server separately using a pre-master secret (which
is exchanged securely using PKI). Thus the handshake process ensures the safety of the session
key. Common examples of algorithms using symmetric key cryptography are AES and RC4.

Hashing and message integrity

After a SSL/TLS session is established, the messages exchanged between the client and server
contains a Message Authentication Code (MAC) generated using a hashing process. The result
of a hashing process is a unique hash code which, unlike PKI or symmetric cryptography, cannot
be decrypted to obtain the original message. Hashing is important to ensure message integrity.
Common hashing algorithms are MD5, and the SHA and SHA2 family.

SSL Protocol and Cipher Suites

The initial exchange of messages that happens between a client and a server during the SSL
handshake include the SSL protocol version and cipher suites. The SSL protocol version can
be SSLv3, TLSv1, TLSv1.0, or TLSv1.2.

SSLv3 is the older SSL protocol version and is considered vulnerable to many security
vulnerabilities such as POODLE and BEAST. TLSv1.2 is the latest (at the point of writing this
paper) protocol and is considered safe against most known security vulnerabilities.

The cipher suites represent a set of algorithms used during the process of SSL/TLS
communication. It contains the following information:

• Protocol (SSL/TLS)
• Key Exchange Algorithm (such as, RSA, DH, ECDH, ECDHE)
• Authentication Algorithm (such as, RSA, DSA, ECDSA)
• Data Encryption Algorithm (such as, AES, RC4, 3DES)
• MAC Algorithm (such as, SHA, MD5, SHA2 family)

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 7

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

There are more than 200 cipher suites. A cipher suite follows the following format:

• Protocol_Kx_[Au]_WITH_Enc_[Bits]_Mac
• Kx = Key-exchange algorithm, e. g., RSA and Diffie-Hellman (DH/DHE), Kerberos (KRB5),

Pre-Shared Key (PSK).
• Au = Authentication algorithm. RSA is commonly used for key authentication.
• Enc = Symmetric encryption algorithm, e.g., DES, 3DES, AES, and RC4.
• Bits = Effective symmetric encryption key size in bits.
• MAC = Hashing algorithm used for TLS/SSL data-packet integrity and authentication checks,

e.g., SHA, MD5.

The following is an anatomy of a typical cipher suite:

Digital Certificate

A digital certificate is like an Identity card for an application (mostly server applications) over
a network. Digital certificates are issued by a Certificate Authority (CA) that is trusted for
providing vouching services. A digital certificate may be issued by an intermediate CA which
in turn may be issued by another CA. Digital certificates are verified using a chain of trust.
The trust anchor for the digital certificate is the ROOT certificate authority.

Every digital certificate should ideally be signed by an issuing CA. A digital certificate
could, however, be a self-signed certificates. Self-signed certificates should be used in the
development phase and are not recommended for production use. The only digital certificate
that can be self-signed is the ROOT CA’s digital certificate.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 8

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

A digital certificate contains:

• A public key
• The identity of the certificate owner
• The identity of the Certificate Authority (CA)

OpenEdge provides tools that you can use to generate the digital certificate for your client/
server application.

Host Name Verification

Apart from the standard SSL handshake, OpenEdge clients can optionally perform Host
Name Verification to validate the server. OpenEdge verifies the host name against the
Common Name listed in the server’s digital certificate. If that does not match, the client
returns an authentication error (9991) as part of the handshake and then terminates the
connection. OpenEdge provides a means to disable Host Name Verification, for example, in an
ABL Client you can supply ”-nohostverify” as a connection parameter to disable Host Name
Verification.

5. Creating a Digital Certificate
When you decide to make your server SSL/TLS enabled, it is very important that you create a
server’s digital certificate and get it signed by a CA that is trusted by the clients it intends to
interact with. What follows are the steps to create a digital certificate.

Generating public/private key pair

OpenEdge ships a utility called pkiutil in DLC/bin. Use this utility to generate a new private/public-
key pair and a corresponding public-key certificate request (suitable for submission to a CA).

https://www.progress.com/
https://www.progress.com/openedge
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/gscsv/digital-certificates-and-certificate-store.html

Progress / OpenEdge 9

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

NOTE: OpenEdge ships pscpki.cnf in the DLC/keys/policy folder that is used by pkiutil as the
policy file for generating digital certificates.

Use the following command:

proenv> pkiutil -keysize <keysize> -newreq <alias>

NOTE: The above command will prompt you for a password. Remember this password as it
will be needed when configuring the keyAliasPassword of your AppServer and other servers.
You can use the above command to generate the following entries in DLC\keys\requests:

1. alias.pk1 – private key
2. alias.pk10 – public key + information about your organization. This serves as a Certificate

Signing Request (CSR) that needs to be submitted to a CA (certificate authority). This uses
the Public Key Cryptography Standards (PKCS) #10 specification, the most common request
format.

While running the above command, you will be required to enter the details of your
organization as the Distinguished Name (DN). The DN includes details like the country, state,
location, organization, organization unit, and the Common Name (CN) of your organization.
The CN of your organization is the fully qualified domain name of the Web Server that will
receive the certificate.

You can verify the subject and signature algorithm, and validate if they match the data you
supplied either in the command line or policy file by using the following command:

proenv> sslc req -text -in %DLC%\keys\requests\alias.pk10 -noout

NOTE: OpenEdge ships an OpenSSL (an open-source implementation of the SSL and TLS protocols)
binary (sslc) to run OpenSSL commands in case you require additional or advanced options.

Signing the Certificate

You can submit the CSR generated by using alias.pk10 to a CA (like Semantic Verisign,
DigiCert, GlobalSign, or GoDaddy) who will charge you a fee for vouching your public key
(contained in the CSR). The CA will sign your server certificate with its private key. Often, you
may find that the CSR of your organization is signed by an intermediate CA, whose server
certificate is signed by a ROOT CA. Such certificates are known as chained certificates. ROOT
CA is a widely-trusted body and its server certificate is a self-signed certificate. A self-signed
certificate is one where you sign your server certificate with your own private key.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 10

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

As said earlier, for production scenarios you should use a CA signed certificate, not a self-
signed certificate.

For testing your server set-up:

1. You can create a self-signed server certificate, or you can create your own private CA to sign
the server certificate.

2. Also, there are several public free CAs which can be used to sign your CSR. These can be
used for testing, for example, http://getacert.com/signacert.html.

Create a Self-Signed certificate

As stated, a self-signed certificate is where you sign the CSR with your own private key. In
OpenEdge, use the following command to generate a self-signed certificate:

proenv>sslc x509 -req -days <days> -in <path of alias.pk10> -signkey <path of alias.pk1> -out

<path of signed .cer file>

Create a ROOT CA and sign your own server certificate

A ROOT CA certificate is a self-signed certificate that you can generate using the OpenSSL
utility. (Refer to the OpenSSL documentation for instructions). Also, you may use your gen-
rootca script to generate a ROOT CA certificate on a UNIX machine. This script is just for
your reference; it is recommended that you create a ROOT CA certificate on your own using
OpenSSL.

If rootCA.cer is the ROOT CA certificate and rootCA.pk1 is the private key of the ROOT CA you
generated, you can sign your CSR using the following command.

Proenv> sslc ca -cert $DLC/keys/requests/rootCA.cer -in $DLC/keys/requests/alias.pk10 -keyfile

$DLC/keys/requests/rootCA.pk1 -days 365 -md sha256 -out $DLC/keys/requests/alias.cer

https://www.progress.com/
https://www.progress.com/openedge
http://getacert.com/signacert.html

Progress / OpenEdge 11

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Combining a CA Issued Digital Certificate with the Private Key
(For a Server)

Once you obtain a CA-issued SSL server digital (public-key) certificate, you need to pair it with
the pkiutil -newreq generated private key identified by the specified alias name (alias), and
then place the pair in the key store as a new entry identified by the alias. You can do this using
the pkiutil -import option.

Note: This function prompts for the password used to generate the public-key certificate
request for this entry.

Before you combine the CA signed certificate with the private key, set up a folder structure for
the new entries as follows for UNIX:

a. Create a new directory named “newcerts” in DLC/keys:
proenv> mkdir $DLC/keys/newcerts

b. Create an index.txt and serial file inside DLC/keys:
proenv> touch $DLC/keys/serial

c. Open this file in any editor and enter 01 and then save the file.
touch $DLC/keys/index.txt

Note: You can use equivalent DOS commands for Windows.

You can then use the following command to generate a Privacy-enhanced Electronic Mail
(PEM) file that contains the server’s private key and the CA-issued SSL server digital (public-
key) certificate. PEM is a container format that was originally associated with securing email,
and is described in Network Working Group Request For Comment.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 12

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

(RFC) 1421 through 1424. Assuming the CA-signed SSL certificate is copied in DLC/keys/re-
quests as alias.cer, the command is as follows:

proenv> pkiutil -import alias $DLC/keys/requests/alias.cer

• Use the following command to check if the alias is listed:
Proenv> pkiutil -list alias

There must be an alias.pem created inside %DLC%\keys folder now.

• Optionally you may view the server’s .pem using:
proenv> pkiutil -print pugDemo

Note: If subject and issuer are the same, the certificate would be self-signed.

Note: OpenEdge ships a default certificate with the alias name default_server. While configuring an
SSL-enabled AppServer, if no keyAlias is provided, default_server is used as the server certificate.

Importing the ROOT CA certificate in Client Cert Store (for clients)

The client for your server can be an ABL client, Java, or .NET OpenClient application, Web
Services Adapter (WSA), AppServer Internet Adapter (AIA), or a browser. The client must be
able to validate the entire chain of trust when connecting to a server.

A certificate store (cert store) is a storage space where certificates, Certificate Revocation Lists
(CRLs), and Certificate Trust Lists (CTLs) are stored. It is typically a permanent storage such
as a folder structure on disk, but could also be in memory.

When a server presents its certificate to the client, the client must have the ROOT CA certifi-
cate imported in its cert store in to validate the entire chain.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 13

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

For ABL Clients

OpenEdge provides the certutil tool to import the CA certificate into the OpenEdge cert store
(DLC/certs). Here is the syntax of the certutil command:

proenv>certutil -import <path of the CA certificate>

When you run this command, the following message is displayed:

Importing trusted certificate to alias name: xxxx

And you will find a xxxx.0 file in the $DLC/certs location.

Note: The alias name is based on how OpenSSL certificate lookup is coded so that it can
perform the certificate chain validation process. A file system directory is logically equivalent
to a keystore, and the .0 hashed filename is used as the index to find a certificate. So rather
than opening every .pem file in the directory and reading its subject name field to see if it is
the one it is looking for to validate, it hashes the issuer name, appends .0, and looks for the
exact file.

For Java OpenClient Applications

You may set the certificate store to DLC/cert by using the RunTimeProperties class:

RunTimeProperties.setCertificateStore(certStore)

You may also import the CA certificate file to $DLC/certs/pscerts.jar using the procertm utility.

Note: The CA certificate file to be imported in psccerts.jar must have a .pem extension. You then
use RunTimeProperties.setCertificateStore(<path to psccerts.jar>) to specify the cert store path.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 14

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

For .NET OpenClient Application

You can import the ROOT certificate from the Certificate Authority using mmc.exe:

a. Click Start, type mmc in the Search programs and files box, and then press ENTER.
b. On the File menu, click Add/Remove Snap-in.
c. Under Available snap-ins, double-click Certificates.
d. Select Computer account, and then click Next.
e. Select Local computer, and then click Finish and then click OK.
f. To save this console, click Save on the File menu, and provide a name.
g. Expand Certificates (Local Computer).
h. Right-click Trusted Root Certificate Authorities > All Tasks > Import.
i. Click Next.
j. At the Certificate Import Wizard click Next, browse to %DLC%\keys\requests\workshop
CA.cer, and click Next -> Next and Finish.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 15

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

6. SSL Vendors in OpEnedge
There is more than one SSL/TLS third-party vendor library used in OpenEdge. This is
important to know as it directly impacts the cipher suite names that are discussed in next
section.

The following components use the OpenSSL SSL library:

• OpenEdge ABL Applications (GUI, Character, AppServer, WebSpeed Client)
• OpenEdge RDBMS (SQL, ABL, DataServer)
• AppServer Agent
• WebSpeed Messenger
• ODBC

The following components use the RSA BSAFE SSL Library:

• AppServer Broker
• Java OpenClients
• Sonic ESB and Generic JMS Adapter
• WSA, REST, AIA

The following components use the Java JSSE distribution:

• OpenEdge Management
• Progress Application Server (PAS)
• JDBC

The following component uses the Microsoft SSL implementation:

• .NET OpenClient

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 16

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

7. Cipher Suite Names Used for
Configuration in OpenEdge

As there are several SSL vendors used in OpenEdge, the cipher suite names used for configu-
ration purposes are abbreviated names as shown in the below table. The fully qualified name
may differ from one vendor to another.

Note: The names shown in red are weak ciphers and are vulnerable to many known SSL/TLS
attacks. Their use is strongly discouraged.

OE Cipher Suite Name Fully Qualified Name

AES256-SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256

DHE-RSA-AES128-GCM-SHA256 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

AES128-GCM-SHA256 TLS_RSA_WITH_AES_128_GCM_SHA256

DHE-RSA-AES128-SHA256 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

ADH-AES128-GCM-SHA256 TLS_DH_anon_WITH_AES_128_GCM_SHA256

DHE-RSA-AES256-SHA256 TLS_RSA_WITH_AES_256_GCM_SHA256

AES256-GCM-SHA384 TLS_RSA_WITH_AES_256_GCM_SHA384

DHE-RSA-AES256-GCM-SHA384 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

ADH-AES256-GCM-SHA384 TLS_ADH_WITH_AES_256_GCM_SHA384

AES128-SHA TLS_RSA_WITH_AES_128_CBC_SHA

RC4-SHA SSL_RSA_WITH_RC4_128_SHA

RC4-MD5 SSL_RSA_WITH_RC4_128_MD5

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 17

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

8. SSL Protocols and Default/
Supported Ciphers Used in
OpenEdge Client Server Components

Every OpenEdge release has its client and server components start with a set of SSL/TLS
protocol and ciphers. In this section, we refer to them as Default SSL protocols and Default
SSL ciphers respectively.

In addition to default SSL protocol and ciphers, each OpenEdge release supports additional
list of protocols and ciphers which are supported but not enabled by default. In this section,
we refer to them as Supported SSL protocols and Supported SSL ciphers.

The following table provides a list of default SSL/TLS protocol and ciphers used for each
OpenEdge version, along with the set of protocols that are supported but are not enabled
by default. For example, OpenEdge 11.7 server components start with TLSv1.2 and a list
of SSL ciphers like AES128-SHA256, AES128-GCM-SHA256 etc. (listed under Default SSL
Ciphers list). However, there are other protocols and ciphers that are supported and server
components must be configured to start with these protocols and ciphers. This configuration
settings are explained later under section 10.

NOTE: Refer to OpenEdge documentation for actual list of protocol and ciphers. (The list below may
not be comprehensive and may be the latest only at the point of creating this whitepaper.)

https://www.progress.com/
https://www.progress.com/openedge
https://documentation.progress.com/output/ua/OpenEdge_latest/

Progress / OpenEdge 18

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Table 8. 1: Default and Supported SSL/TLS protocols and Ciphers in OpenEdge Server components:

OE Version
Default

SSL
Protocols

Supported
SSL

Protocols
Default SSL Ciphers Supported SSL Ciphers

11.7 TLSv1.2

TLSv1.2

TLSv1.1

TLSv1

SSLv3

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256,

AES256-GCM-SHA384,

DHE-RSA-AES256-GCM-SHA384,

ADH-AES256-GCM-SHA384,

AES128-SHA,

RC4-SHA,

RC4-MD5

11.6.x TLSv1.2

TLSv1.2

TLSv1.1

TLSv1

SSLv3

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256,

AES256-GCM-SHA384,

DHE-RSA-AES256-GCM-SHA384,

ADH-AES256-GCM-SHA384,

AES128-SHA,

RC4-SHA,

RC4-MD5

11.5.1 TLSv1
TLSv1

SSLv3
AES128-SHA

AES128-SHA,

RC4-SHA,

RC4-MD5

11.4.0

(Latest HF)

11.3.3

(Latest HF)

10.2B08

(Latest HF)

TLSv1

SSLv3

SSLv2

TLSv1

SSLv3

SSLv2

RC4-SHA,

RC4-MD5

AES128-SHA,

RC4-SHA,

RC4-MD5

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 19

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Table 8. 2: Default and Supported SSL/TLS protocols and Ciphers in OpenEdge Client components:

OE Version
Default

SSL
Protocols

Supported
SSL

Protocols
Default SSL Ciphers Supported SSL Ciphers

11.7 TLSv1.2

TLSv1.2

TLSv1.1

TLSv1

SSLv3

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256

AES128-SHA256,

AES128-GCM-SHA256, AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256,

AES256-GCM-SHA384,

DHE-RSA-AES256-GCM-SHA384,

ADH-AES256-GCM-SHA384,

AES128-SHA, RC4-SHA, RC4-MD5,

DES-CBC3-SHA, DES-CBC-SHA

11.6.x TLSv1.2

TLSv1.2

TLSv1.1

TLSv1

SSLv3

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256

AES128-SHA256,

AES128-GCM-SHA256,

AES256-SHA256,

DHE-RSA-AES256-SHA256,

DHE-RSA-AES128-GCM-SHA256,

DHE-RSA-AES128-SHA256,

AES256-GCM-SHA384,

DHE-RSA-AES256-GCM-SHA384,

ADH-AES256-GCM-SHA384,

AES128-SHA, RC4-SHA, RC4-MD5,

DES-CBC3-SHA, DES-CBC-SHA

11.5.1 TLSv1
TLSv1

SSLv3
AES128-SHA

AES128-SHA, RC4-SHA,

RC4-MD5, DES-CBC3-SHA,

DES-CBC-SHA

11.4.0

(Latest HF)

11.3.3

(Latest HF)

10.2B08

(Latest HF)

TLSv1

SSLv3

SSLv2

TLSv1

SSLv3

SSLv2

RC4-SHA,

RC4-MD5

AES128-SHA,

RC4-SHA,

RC4-MD5,

DES-CBC3-SHA, DES-CBC-SHA

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 20

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Changing the default protocol and ciphers for OpenEdge Server
Components

Servers
How to Change Protocol and

Ciphers
Comments

AppServer /

WebSpeed

Broker

Environment Variables:

PSC_SSLSERVER_PROTOCOLS

PSC_SSLSERVER_CIPHERS

Set the environment variable as follows in the Environment

variable section of the ubroker.properties file.

[Environment.<Broker Name>] PSC_SSLSERVER_

PROTOCOLS=TLSv1.1,SSLv3

PSC_SSLSERVER_CIPHERS=AES128-SHA, RC4-MD5

OpenEdge

Database

Environment Variables:

PSC_SSLSERVER_PROTOCOLS

PSC_SSLSERVER_CIPHERS

Set these environment variables before starting the

database in SSL mode.

OpenEdge SQL

Environment Variables:

PSC_SSLSERVER_PROTOCOLS

PSC_SQL_SSLSERVER_CIPHERS

OE SQL uses same environment variable as others for SSL

protocol change but different environment variable for

ciphers.

PAS for OE

Properties:

psc.as.https.protocol

psc.as.https.ciphers

Use tcman utility to configure the following properties:

tcman config psc.as.https.protocol=TLSv1

tcman config psc.as.https.ciphers=AES128-SHA256

PDSOE

Properties:

defaultHttpProtocol

configuredCipherSuites

Set these properties in:

 dlc\oeide\eclipse\plugins\com.openedge.pdt.debug.

core_11.x.x.00\clientProtocols.properties.

Dataserver

Environment Variables:

PSC_SSLSERVER_PROTOCOLS

PSC_SSLSERVER_CIPHERS

Set these environment variables before starting the

database in SSL mode to set ciphers and protocols other

than the default.

Use the environment variable or properties as described in above table to configure the server components
to use protocols or ciphers that are supported but are not the default protocol or ciphers.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 21

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Changing the default protocol and ciphers for OpenEdge Client
Components

Clients
How to Change Protocol and

Ciphers
Comments

ABL

Connection parameters:

-sslprotocols,

-sslciphers

Set these as connection parameters to OE AppServer

or any external Web Server.

ABL (SOAP out)

Connection parameters:

-sslWSDLProtocols, -sslWSDLCiphers,

-sslSOAPProtocols, -sslSOAPCiphers

Set these as connection parameters to external SOAP

services.

Java Open Client

Session properties:

PROGRESS.Session.sslprotocols

PROGRESS.Session.sslciphers

Set these as Java System property to Java client

process. For example,

-DPROGRESS.Session.sslprotocols=TLSv1.2

-DPROGRESS.Session.sslciphers=AES128-SHA256

.NET Open Client

Session properties:

PROGRESS.Session.sslprotocols

PROGRESS.Session.sslciphers

Set these properties in the application config file.

AppServer Agent

Environment Variables:

PSC_SSLCLIENT_PROTOCOLS

PSC_SSLCLIENT_CIPHERS

AppServer agent as client to DB uses the environment

variable in the ubroker.properties file to change default

configuration of protocol and ciphers.

Use the environment variable or properties as described in the above table to configure the OpenEdge client
components to use protocols or ciphers that are supported but are not the default protocol or ciphers.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 22

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Changing the default protocol and ciphers for Adapters and
OpenEdge Management

Components
How to Change Protocol

and Ciphers
Comments

1. REST Adapter 2. WSA

3. AIA

4. WebSpeed Messengers

(cgiip, wsapi)

PSC_SSLCLIENT_PROTOCOLS

PSC_SSLCLIENT_CIPHERS

Set this environment variable before stating

the web server in which AIA, WSA, REST, and

Messengers are configured.

OEM - Jetty Web Server
SSLEnabledProtocols

SSLEnabledCipherSuites

Set these in the $DLC/properties/fathom.

properties file.

OpenEdge Management

- ActiveMQ transport

connector for remote

monitoring.

enabledProtocols

enabledCipherSuites

Set these in the $DLC/properties/

management.properties file.

Use the environment variable or properties as described in above table to configure the OpenEdge Adapter
components to use protocols or ciphers that are supported but are not the default protocol or ciphers.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 23

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

9. OpenEdge and Known
Vulnerabilities

OpenEdge 11.5.1 and the latest hotfixes for 11.4.0, 11.3.3, and 102B08 mitigate the following
vulnerabilities:

• SSL POODLE
• FREAK
• CRIME
• BREACH
• RC4 attack

OpenEdge 11.6 and above mitigates most of the known vulnerabilities like:

• TLS POODLE
• SSL POODLE
• FREAK (no export ciphers)
• CRIME (No TLS compression)
• BREACH (No HTTP compression)
• RC4 attack
• BEAST

(A detailed description of these vulnerabilities can be found on the Internet and is out of the
scope of this paper.)

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 24

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

10. Enabling and Configuring SSL for
Server Components

OpenEdge AppServer

To enable SSL for your OpenEdge AppServer or Progress WebSpeed broker, configure the
following in the [UBroker.AS.xxxx] section of the ubroker.properties file:

• sslEnabled=1 to enable SSL connection
• keyAlias=<alias> of the server certificate (.pem) that you generated in section 5

Note: If you do not provide the alias name, the default server certificate “default_server” is used.

• keyAliasPassword=<password> used to generate the digital certificate using pkiutil -newreq
command explained in section 5

Note: If you do not want to provide the password in clear text, you may use the genpassword
utility to generate a hashed password, and then you can then specify the keyAliasPassword as
oech1::xxxx where xxxx is the output of genpassword utility.

If you wish to specify a supported SSL protocol or cipher, you can do so by adding
environment variables as explained in section 10. The environment variables need to be set in
the Environment variable section of the ubroker.properties file as:

[Environment.<Broker Name>]
PSC_SSLSERVER_PROTOCOLS=TLSv1.1,SSLv3
PSC_SSLSERVER_CIPHERS=AES128-SHA,RC4-MD5

You may alternatively use OpenEdge Explorer (OEE) or OpenEdge Management (OEM) to
create an SSL-enabled AppServer by selecting the Enable SSL Connection checkbox and
providing an alias name and password under the SSL tab.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 25

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

SSL Logging in OpenEdge AppServer

The AppServer broker uses the RSA BSAFE SSL library for SSL communication. Hence, to get
SSL logging from the AppServer broker you need to specify the RSA SSL logging (discussed
in troubleshooting section later) as jvmArgs in the [UBroker.AS.xxxx] section of the ubroker.
properties file.

The AppServer agent uses OpenSSL, and to get SSL logs from the Agent processes, you
need to add following environment variable in the Environment section of your broker in the
ubroker.properties file:

SSLSYS_DEBUG_LOGGING=<value between 1 to 5>

Since the agent acts as a server, it creates a log named cert.server.log in the OpenEdge
WRKDIR.

OpenEdge Database

To start the database in SSL-enabled mode, add an -ssl option while you proserve your
database using the following command:

proserve <db-name> -S <port> -H <host> -ssl

It starts the database in SSL mode, and uses default_server as the server certificate. You can
provide a digital certificate that you created by using -keyalias and -keyaliaspasswd:

proserve <db-name> -S <port> -H <host> -ssl -keyalias <alias> -keyaliaspasswd <hashed password>

NOTE: The hashed password that is supplied to keyaliaspasswd can be generated using the
genpassword utility. For example:

proenv> genpassword -password pugws

The genpassword is used to encrypt the password so OpenEdge does not pass the password
as clear text in the command line. Use the above generated password for the -keyaliaspasswd.

If you want to specify a supported SSL protocol or cipher, add the environment variables as
explained in section 10. The environment variables (PSC_SSLSERVER_PROTOCOLS and PSC_
SSLSERVER_CIPHERS) are set in the shell from where the proserve command is run.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 26

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

SSL Logging in the Database

As the database uses OpenSSL, you need to set SSLSYS_DEBUG_LOGGING before you
proserve the database. The SSL logs for database broker are dumped to the cert.server.log file.

Progress Application Server for OpenEdge

All Progress Application Server (PAS) for OpenEdge instances are preconfigured with default
HTTPS settings.

1. To list all the instances:

proenv>pasman instances

oepas1 | C:\OpenEdge\WRK\oepas1 | instance | ok

oepas2 | C:\OpenEdge\WRK\oepas2 | instance | ok

2. To examine the configuration:

proenv> cd oepas1/bin

Proenv> tcman config | findstr https

-Dpsc.as.https.port=8811
-Dpsc.as.https.keypass=password
-Dpsc.as.https.keyalias=test2
-Dpsc.as.https.storeType=PKCS12
-Dpsc.as.https.trustpass=password
-Dpsc.as.https.trustType=JKS
-Dpsc.as.https.connectiontimeout=20000
-Dpsc.as.https.maxthreads=150
-Dpsc.as.https.protocol=TLSv1.2
-Dpsc.as.https.clientauth=false
-Dpsc.as.https.sessiontimeout=86400
-Dpsc.as.https.ciphers=ALL
-Dpsc.as.https.maxqueuesize=100
-Dpsc.as.https.maxconnections=-1
-Dpsc.as.https.compress=on

The highlighted configurations are the ones that you will most commonly use and configure
for SSL/TLS communication.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 27

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

3. You can change any of the configurations using the tcman config command.

The keyalias that PAS for OpenEdge uses must be either of type JKS (Java KeyStore) or
PKCS12 (Public-Key Cryptography Standards #12).

Starting with OpenEdge 11.7.0, pkiutil has been enhanced to export the server certificate
(.pem) in PKCS12 format:

pkiutil -exportp12 -alias <alias-name> -p12file <p12file-path>

You can copy the exported P12 file to $WRKDIR/<instance>/conf/ tomcat-keystore.p12. Then,
run the tcman config commands to configure the keyalias and keypass with the values you
provided while generating the certificate using the pkiutil -newreq command.

Note: Restart PAS for OpenEdge for these changes to take effect.

• proenv> tcman config psc.as.https.keyalias=<alias>
• proenv> tcman config psc.as.https.keypass=<password>

Enabling Client Authentication for PAS for OpenEdge

As described in the SSL/TLS process in Section 4, the server presents its digital certificate
to the client during the ServerHello message exchange. However, a server can be configured
such that it requires the client to possess a Public Key Certificate (PKC). If you specify client
authentication, the web server authenticates the client using the client’s public key certificate.
This is known as HTTPS client authentication, and is a secure method of authentication than
either basic or form-based authentication. It uses HTTP over SSL (HTTPS), in which the
server authenticates the client using the client’s Public Key Certificate (PKC).

To enable client authentication for PAS for OpenEdge, follow these steps:

1. Import the client certificate to the tomcat trustStore.

You can use Java’s Keytool utility to import the client certificate. For example, say the client
certificate clientCert.cer, is present in $DLC/keys/requests, and you have a PAS for OpenEdge
instance named “oepas1”, use the keytool command as below:

keytool -importcert -alias clientcertalias -file $DLC/keys/requests/clientCert.cer -keystore

$WRKDIR/oepas1/conf/tomcat-certstore.jks -storepass password –noprompt

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 28

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

2. Set psc.as.https.clientauth to true. If you change the trust password, you will need to modify
psc.as.https.trustpass as well. You can use tcman config command to do so.

tcman config psc.as.https.clientauth=true

tcman config psc.as.https.trustpass=<password>

Note: You may find that by default psc.as.https.trustType is JKS. Java keytool is recommended
for use with the JKS format. You may change it to PKCS if required. You will then need to use
OpenSSL to import the client certificate to the Tomcat truststore.

ABL Client

For ABL Clients to connect to an SSL-enabled server, you need to provide the hostname and
port as part of CONNECT() method. If you wish to provide a non-default SSL protocol and
cipher, you can do so using:

• sslprotocols
• sslciphers

Note: The value provided supersedes the default SSL protocol and cipher, or those set using
PSC_SSLCLIENT_PROTOCOLS or PSC_SSLCLIENT_CIPHERS environment variables.

If the ABL Client wants to connect to a WSDL or SOAP service that is SSL-enabled, the
protocol and ciphers can be specified using:

To connect to a WSDL service:

• sslWSDLProtocols
• sslWSDLCiphers

11. Configuring OpenEdge Clients for
SSL Communication

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 29

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

To connect to a SOAP service:

• sslSOAPProtocols
• sslSOAPCiphers

The ABL client uses $DLC/certs as its certificate (cert) store.

The ABL client uses OpenSSL, so to get SSL logs related to the ABL client communicating to
an SSL Server, you need to set the following environment variable:

SSLSYS_DEBUG_LOGGING=<value between 1 to 5>

This creates a log named cert.client.log in the OpenEdge WRKDIR.

Client Authentication

Client authentication is explained in Section 13. Since OpenEdge 11.4, ABL clients can connect
to a server configured for client authentication. You can use the following parameters in the
ABL CONNECT() method to enable your ABL client to connect to a Web Service that requires
the client to send its digital certificate.

• WSDLAuth ssl|basic

Set this to ssl to enable client authentication for WSDL access. If you set it to basic, the
connect method ignores client authentication for WSDL access.

• WSDLKeyFile filename | target-database

Set only if -WSDLAuth parameter is set to ssl. The location of the client certificate in PEM
format. If you do not specify an absolute path of the client certificate file, the connection
operation searches the $DLC/keys folder for the client-certificate-file-name.pem file.

• WSDLKeyPwd password

The SSL client certificate password in clear text (typically not recommended) or encoded
format.

• sslAuth Authentication-type

Set this to ssl to enable client authentication for SOAP access. If you set it to basic, the
connect method ignores client authentication for SOAP access.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 30

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

• sslKeyFile filename | target-database

The location of the client certificate. If you do not specify an absolute path of the client
certificate file, the connection operation searches the $DLC/keys folder for the client-
certificate-file-name.pem file. This option must be set only if -sslAuth parameter is set to ssl.

• sslKeyPwd password

The SSL client certificate password in clear text (typically not recommended) or encoded
format.

Java OpenClient

Refer to Section 11 for connection options.

Here is a sample Java OpenClient program that connects to a SSL-enabled AppServer. You can
change the SSL protocols and ciphers using the following Java system variables:

PROGRESS.Session.sslprotocols

PROGRESS.Session.sslciphers

You can alternatively use setters on RunTimeProperties as shown in the following program:

String certStore = “C:/Progress/OpenEdge/certs/psccerts.jar”;
RunTimeProperties.setCertificateStore(certStore);
RunTimeProperties.setNoHostVerify(true);
RunTimeProperties.setSessionModel(1);
RunTimeProperties.setSslVersions(“TLSv1.2”);
RunTimeProperties.setSslCiphers(“AES128-SHA256”);

OpenAppObject appObj = null;
Connection conn = new Connection(“https://localhost:8811/apsv”, “”, “”, “”);
conn.setSessionModel(0);
m_AppObject1 = new OpenAppObject(conn, “”);
ParamArray paramArray = new ParamArray(2);
String name = “Alice”;
String msg = null;
paramArray.addCharacter(0, name, ParamArrayMode.INPUT);
paramArray.addCharacter(1, msg, ParamArrayMode.OUTPUT);
appObj.runProc(“hello.p”,paramArray);
System.out.println(m_ParamArray.getOutputParameter(1));

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 31

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

.NET OpenClient

Refer to Section 11 for connection options such as:

PROGRESS.Session.sslprotocols

PROGRESS.Session.sslciphers

These need to be set in the application config file.

Browser
You may be using a web browser to connect to your PAS for OpenEdge or REST Services. In
case your server is configured for client authentication, you may see the following error when
you hit a secured URL:

ERR_BAD_SSL_CLIENT_AUTH_CERT

This is because the server is configured to demand clients to present their certificates. The
browser must then send a certificate to PAS for OpenEdge. Use the following these steps to
configure the browser:

To import a certificate in the browser:

a. Open the Chrome browser.
Note: You can use any other browser, but the below steps are for Chrome. Other browsers
have almost similar step.

b. Go to Settings > Show Advanced Settings.

c. Scroll down to the HTTPS/SSL section.

d. Click Manage Certificates.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 32

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

e. Click Import… ->Next and browse $DLC/keys/requests. Ensure you choose All Files (*.*) in
the browse Window:

f. Select a client certificate (say clientCert.p12, located in $DLC/keys/requests).
g. Click Next and enter the password in the window when prompted.
h. Click Next and import the clientCert.p12:

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 33

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

12. Debugging Tools
There are many tools available to debug a client and a server connection. sslyze (https://
github.com/nabla-c0d3/sslyze/releases) is an Open Source analyzer and helps to trouble-
shoot mismatched protocol and ciphers between the client and the server. You may also use
OpenSSL s_client and s_server to test your client and server configuration. The format for
using sslyze is:

sslyze.exe <HOST>:<PORT> --<PROTOCOL>

• HOST is the hostname of the SSL server.
• PORT is the port of the SSL server.
• PROTOCOL is the list of protocols that is provided to check if the server accepts specified

protocols. The values, for example can be “--sslv2, --sslv3, --tlsv1, --tlsv1_1, --tlsv1_2”. If you see
rejected for the mentioned protocol, that means that the server will not accept the specified
protocol.

For example:

Sslyze.exe localhost:8811 --tlsv1

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 34

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

The following screenshot shows that for all TLSv1 and supported cipher combinations, the connection is rejected:

If using a protocol that server supports, such as TLSv1.2, there are many ciphers that are accepted:

There are also many ciphers that are rejected:

You can therefore modify your client program to use correct set of protocols and ciphers supported by the server.

https://www.progress.com/
https://www.progress.com/openedge

Progress / OpenEdge 35

©
 2

01
7

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw
For regional international office locations and contact information,
please go to www.progress.com/worldwide

To learn more about OpenEdge technologies available to help secure your application
environment, read Protecting Your Application in a Challenging Environment or contact us.

Progress and Telerik Kendo UI by Progress are trademarks or registered trademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in

the U.S. and/or other countries. Any other trademarks contained herein are the property of their respective owners.

© 2017 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2017/08 | 170727-0063

About OpenEdge
Progress® OpenEdge® is the leading platform for
building mission-critical applications flexible enough
to continuously evolve as the business does for any
platform or mobile device. It enables you to easily
develop on-premises, cloud or hybrid apps, deliver
future-proof web UI and rapidly build cross-platform
mobile apps. OpenEdge meets all your digital
business needs delivering total data management
for any data source with enhanced performance,
minimal IT complexity and the industry’s lowest
total cost of ownership. To learn more, visit
progress.com/openedge.

About Progress
Progress (NASDAQ: PRGS) offers the leading
platform for developing and deploying mission-
critical business applications. Progress empowers
enterprises and ISVs to build and deliver cognitive-
first applications, that harness big data to derive
business insights and competitive advantage.
Progress offers leading technologies for easily
building powerful user interfaces across any type
of device, a reliable, scalable and secure backend
platform to deploy modern applications, leading
data connectivity to all sources, and award-winning
predictive analytics that brings the power of
machine learning to any organization. Over 1,700
independent software vendors, 80,000 enterprise
customers, and two million developers rely on
Progress to power their applications. Learn about
Progress at www.progress.com or +1-800-477-6473.

https://www.progress.com/
https://www.progress.com/openedge
https://www.progress.com/papers/openedge-protecting-applications-in-a-challenging-environment
https://www.progress.com/company/contact
http://progress.com/openedge
http://www.progress.com

