

1

Sitefinity Web Forms widgets
deprecation and migration paths

Overview and implications of the deprecation .. 2

Deprecated features ... 2

Recommended alternatives .. 2

License implications .. 2

Deprecation plan .. 3

FAQ .. 3

Why .NET Core ... 5

How to kick-start with Sitefinity .NET Core ... 5

Advantages of using .NET Core renderer ... 6

Development performance comparison ... 6

Development comparison ... 6

Extensibility support ... 6

API support ... 7

Performance comparison.. 7

CI/CD comparison ... 7

Documentation and samples support ... 7

Widget mapping .. 8

.NET Core widgets ... 8

MVC and Web Forms widgets ... 9

Migrate your pages to .NET Core ... 9

Additional resources .. 9

2

Overview and implications of the deprecation

Deprecated features

As of release 14.1, the Web Forms widgets for front-end development in

Sitefinity DX are being deprecated. The following feature set will be in

sunset mode:

• Built-in Web Forms widgets

• Web Forms widget templates

• Hybrid page templates

• Responsive design module

Recommended alternatives

Recommended alternatives are:

• .NET Core widgets and templates (official in release 14.1)

• MVC widgets and templates

License implications

How this deprecation affects your projects:

• Customers running legacy editions such as Standard, Marketing,

Professional, Enterprise Editions prior to Sitefinity DX 14.0 will be affected,

if they decide to upgrade to Sitefinity 14.1.

• Customers running current Sitefinity DX 14.0 + Enterprise Package

customers who utilized Web Forms in their projects may also be affected, if

they decide to upgrade to Sitefinity 14.1.

3

Deprecation plan

We are confident that the modern alternatives to the features that are

being deprecated provide a greater value to both developers and

practitioners. In addition, deprecating technologies that have reached

their end of life will enable the Progress team to focus on further

enhancing the platform and ensuring utmost stability, security, and

performance.

With release 14.1, we have agreed on the following deprecation plan:

• For newly created projects on version 14.1: the Web Forms widgets and

widget templates, Responsive design module, Hybrid page templates will not

be available.

We do not recommend using a deprecated feature set as part of any new

deployment. We will not provide any additions, enhancements or

modifications to the existing functionality.

• For upgraded projects (existing projects on versions prior to 14.1): these

capabilities will continue to work, so that the projects are not broken upon

upgrade and customers have more time to plan and execute their migration.

The capabilities will be in sunset mode, which means that Progress will not

invest in feature development or bug fixes.

• The deprecated feature set will not be eligible for support, security or bug

fixes.

FAQ

• Which technology should I start using for my next project – MVC or .NET

Core?

A: We recommend you to carefully evaluate .NET Core and its features since it

has many superior capabilities compared to MVC. Then make an informative

decision about which technology better matches your requirements.

4

• Will MVC be deprecated soon and require migrating my projects?

A: No, it will not be deprecated soon. We are planning to keep

supporting it since it provides a great set of features and wide

adoption by our customer’s base.

• Do you have any plans to support migration of existing widgets?

A: Yes, we will provide guidelines for migration of widgets.

• Is .NET Core the recommended way to go from now on?

A: .NET Core is coded in a way that follows the latest programming

patterns and allows us to deliver features quite fast (for example, new widgets

development). The .NET Core renderer is not coupled with an old technology

stack and will boost your developer productivity, it also provides superior

capabilities compared to MVC. On the other hand, MVC has accumulated a

significant set of widgets and features over the years, and they are quite

handy. Also, your team already has experience with it and no learning curve

will be ahead of them compared to .NET Core path.

• Will existing MVC and Web Forms projects/pages continue running into .NET

Core, so my team can slowly transition to .NET Core?

A: Yes, it is perfectly OK to use your existing MVC and Web Forms pages with

.NET Core. In this case, the .NET Core renderer will act like a proxy and will

serve those MVC pages to the client so you can have MVC, Web Forms, and

.NET Core pages into the same project without a hustle. This approach helps

especially when trying to migrate existing projects to .NET Core.

• Do you plan to open source the widgets?

A: Yes, we will provide open-source .NET Core widgets with release 14.1 -

having the code for them would boost developer productivity.

5

Why .NET Core

.NET Core is an open source, cross-platform framework, developed both

by Microsoft and its community. It is a complete reform of ASP.NET that

combines MVC structure and Web API into a single framework. This is the

natural continuation of the .NET framework and Sitefinity will support the

latest version of this framework by providing a decoupled frontend

renderer.

There are multiple value propositions with our .NET Core

implementation:

• Fast development and quick time to market

• Easier upgrades

• Complete isolation between website and administration

• Separated frontend scalability

• IDE of choice

• Cross platform deployment and development

• .NET Core is an open-source framework

• .NET Core Sitefinity widgets are open source

• Real WYSIWYG page editor

• Multiple widgets coming out of the box to support the needs of marketers

• Superior layout capabilities

How to kick-start with Sitefinity .NET Core

The following is an on-demand training course. You will learn how to use Sitefinity

from a developer standpoint. Get familiar with the New UI and .NET Core in

depth, learn how to develop widgets, templates, and backend extensions:

Foundations of Sitefinity Development

https://www.progress.com/services/education/sitefinity/foundations-of-sitefinity-development

6

Advantages of using .NET Core renderer

Development performance comparison

Using .NET core renderer boosts development productivity by a large

amount since the Renderer app is separate from Sitefinity CMS and has a

fast startup time. Not restarting the CMS has a huge advantage in

development, you could see your changes rapidly. You can take

advantage of the dotnet run watch command to enable dynamic code

changes and you can even take advantage of the hot module reload

starting with .NET 6.

Development comparison

The development model stays the same by using the concept of widget

development and template development as it was with the MVC and Web Forms

renderers. In the renderer case, we are leveraging view components and layout

files. There are samples and documentation available that demonstrate how this

is implemented.

Extensibility support

Using .NET Core renderer, you can create your own layout files/templates and

view components (widgets) as a distributed library. Moreover, any custom

widgets distributed in widget libraries (including the out-of-the-box widgets

provided by Sitefinity) can be extended by three ways:

• Changing the model class (holding the logic of the widget) through the DI

container

• Adding new views

• Extending the Entity class and adding new properties to the widget

designer

7

API support

The Renderer app uses a selected number of APIs that are concerned with

content management only. They are used through the C# RestSdk

package (Progress.Sitefintiy.RestSdk). This limits the room for error and

hacks when it comes to developing on the frontend since the frontend is

concerned only with content. Additional API endpoints can be exposed

from Sitefinity CMS, if needed.

Performance comparison

Zero compilation with .NET Core as compared to MVC. Since the .NET Core

Renderer is a standalone application, we can leverage the out-of-the-box async

support with .NET.

CI/CD comparison

The renderer is extremely easy to deploy since it is a small app holding no data

and a small number of configurations. This gives you the following options:

• Deploy only the Renderer app when having changes to the frontend only.

Extremely fast deployment which reduces the downtime of the app.

• Point your Renderer app to the staging environment where all the content

is pulled from live. This gives the ability to view your latest code changes

against the latest live data.

Documentation and samples support

• GitHub samples repo

• Product documentation

https://github.com/Sitefinity/sitefinity-aspnetcore-mvc-samples
https://www.progress.com/documentation/sitefinity-cms/overview-renderer

8

Widget mapping

.NET Core widgets

• Section widget

This is a layout widget that you can use to create the layout

elements of your page. It also has out-of-the-box styling features,

such as margins, paddings, and backgrounds. Learn more...

• Navigation widget

This is the widget that you use to create your website navigation.

Learn more...

• Content block widget

This is the widget that you use to create content. You can use it to display

text, tables, images, or videos. Learn more...

• Content list widget

This is an out-of-the-box .NET Core widget that you use to render Sitefinity

CMS content on the frontend - a single widget that can work with both

static and dynamic content at the same time. Learn more...

• Image widget

This is the widget that you use to display images. Learn more...

• Call to action widget

This is the widget that you use to display one or two call to action buttons

on your page. You can have a button for the primary action and a button

for a secondary action. Learn more...

• Custom widgets

With the new paradigm, you can create custom widgets extremely fast; the

widget designers are autogenerated. Learn more...

• Login widgets and Forms

These capabilities will be available out of the box with release 14.1. Learn

more...

https://www.progress.com/documentation/sitefinity-cms/style-the-section-widget
https://www.progress.com/documentation/sitefinity-cms/navigation-widget-core
https://www.progress.com/documentation/sitefinity-cms/content-block-widget-core
https://www.progress.com/documentation/sitefinity-cms/content-list-widget-core
https://www.progress.com/documentation/sitefinity-cms/image-widget-core
https://www.progress.com/documentation/sitefinity-cms/call-to-action-widget
https://www.progress.com/documentation/sitefinity-cms/create-a-custom-asp.net-core-widget
https://www.progress.com/blogs/sitefinity-dx-14.0-dot-net-core-better-get-ready
https://www.progress.com/blogs/sitefinity-dx-14.0-dot-net-core-better-get-ready

9

MVC and Web Forms widgets

View the list of available types of built-in widgets in Sitefinity CMS:

List of MVC and Web Forms widgets

Migrate your pages to .NET Core

The .NET Core Renderer does not limit you to create and edit only .NET

Core pages. Using the Renderer, you can simultaneously work with .NET

Core, MVC, and Web Forms pages. This means that in each site, you can

have a mixed collection of all the three supported rendering mechanisms.

This way, you can migrate your current website page by page.

For more information, see Migrate your pages to .NET Core.

Additional resources

• Sitefinity DX 14.0 and .NET Core: Better Get Ready

• Sitefinity's life cycle policy guide – view supported and retired versions
schedule

https://www.progress.com/documentation/sitefinity-cms/reference-sitefinity-cms-widgets
https://www.progress.com/documentation/sitefinity-cms/migrate-your-pages-to-.net-core
https://www.progress.com/blogs/sitefinity-dx-14.0-dot-net-core-better-get-ready
https://www.progress.com/support/sitefinity-lifecycle-policy

