
WHITEPAPER

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Upgrading
Sitefinity CMS
Best Practices

Progress 2

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Upgrading Sitefinity CMS
Best Practices

The common notion about upgrade is that of a complex process taking lots of
time and resources, with an arbitrarily happy ending. But is that really true? Should
we postpone upgrading our Sitefinity websites until the last possible moment, or
should we upgrade more often? As a matter of fact, how much control do we have
over the process and its outcome? And can’t upgrade just be...simpler?

Honestly, upgrade is not a simple thing. It’s a complex process involving multiple
operations, including replacing Sitefinity precompiled logic, modifying database
schema, configuration files, assembly references and so on. But this doesn’t neces-
sarily mean that performing an upgrade should be a hard task. We are constantly
trying make as many elements of the upgrade process happen automatically for
you. Upgrade should be easy if you are well informed, have a diligent approach
and plan well in advance. This whitepaper shares our recommendations and best
practices based on observations, in-house practices, and multiple conversations
with customers. Moreover, we’ll be trying to provide more context into what the
upgrade process actually does, so that you’re not following the listed steps blindly
but have a deeper understanding of the mechanics of a Sitefinity website upgrade.

Before we begin, let’s spend a minute talking about the top three benefits of up-
grade, and why we advise upgrading your Sitefinity website regularly.

• Stay up to date.
Even if you’re not planning on upgrading right now, a critical security update
or a feature that perfectly solves your business need will come up sometime in
the future. Following the regular update cycle means less hassle when up-
grading. Skipping multiple versions and then having to go through all of them
means executing more upgrade scripts, handing more API changes, more test-
ing, and so on. Simply put, upgrading your website regularly just makes things
better.

• Keep it secure
How do you keep your smartphone, personal computer, or webserver secure?
Without even going into the complex network configurations, IP whitelisting,
firewalls, antivirus software, and so on, everyone’s priority is installing the latest
software updates. Why would your CMS be any different?

https://www.progress.com/
https://www.progress.com/openedge

Progress 3

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

• Benefit from the new features
We ship amazing new functionality with each product release. Take a look at
the release notes to get an idea of all the great stuff that gets out at least three
times a year with Sitefinity CMS.

Let’s look at how you can get these benefits by performing a smooth Sitefinity
upgrade.

I. Preparation for the Upgrade

1. Plan sufficient time for the upgrade. Depending on different factors, like
your project size, level of customization, automation and so forth, you might
need to spend some extra time on code refactoring, functional testing, and
so on. Additionally, planning sufficient time for the upgrade ensures there is
enough time to resolve any unexpected issues that occur. If no issues occur
and the upgrade completes smoothly, you can use the remaining time for
user acceptance testing.

2. Review the release notes of all major versions between your current version
and the target version

• Review the API breaking changes between your current Sitefinity version
and the version you are targeting for the upgrade. Note that when you
are upgrading all listed breaking changes between the versions apply. In
other words, if your site is currently running on version 9.0 and you want
to upgrade it to 11.0, all breaking changes introduced in the releases
between 9.0 and 11.0 apply to you.Despite our efforts to minimize API
breaking changes, sometimes refactoring requires us to do so. Look for
usage of the affected APIs in your project and build a plan for modifying
any affected code after the upgrade. API changes are among the most
common reasons for post-upgrade issues on customized projects.
Anticipating them and having a clear plan for addressing the changes
will make your upgrade much smoother.

• Review the Database changes between the versions While not required,
it is good to be familiar with the database changes that will be in place
after the upgrade. The Sitefinity upgrade log file (UpgradeTrace.log,
located in ~/App_Data/Sitefinity/Logs) reflects all changes applied to the
database during upgrade and their status.

3. Check whether the target Sitefinity version is compatible with the .NET ver-
sion running on your machine, and install any new version if required.

4. Install the target Sitefinity version and create a new project with that version
locally. Make sure it is working properly. This will help isolate whether any
issues pertain to your project specifically, or your environment needs ad-
ditional configuration to meet the new version requirements.

https://www.progress.com/
https://www.progress.com/openedge
https://www.progress.com/sitefinity-cms/release-notes
https://www.progress.com/sitefinity-cms/release-notes
https://www.progress.com/documentation/sitefinity-cms/api-changes-in-sitefinity-cms
https://www.progress.com/documentation/sitefinity-cms/database-changes-in-sitefinity-cms
https://www.progress.com/documentation/sitefinity-cms/reference-sitefinity-cms-and-.net-framework-compatibility
https://www.progress.com/documentation/sitefinity-cms/reference-sitefinity-cms-and-.net-framework-compatibility

Progress 4

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

5. Make a test deployment of the empty project on the target staging/test
environment. Ensure the empty project deploys smoothly. Try to resolve any
deployment issues. If you require assistance, open a support ticket for help.
Ensuring an empty project deploys successfully will give you the confidence
to later deploy the actual upgraded project more easily and only deal with
project-specific issues (if any).

6. Make backups of the project files and corresponding database(s). Sitefin-
ity upgrade is a non-reversible process, thus having a backup from a point
in time right before the upgrade is a must. It enables you to restore your
website to a backed up version if anything unexpected happens during the
upgrade process, and guarantees data loss prevention.

7. Restore a copy of your website project (and corresponding database(s)), that
will be upgraded, locally.

8. Change all connection strings and make them point to a local copy of the
database(s). It might be a good idea to prohibit access of the local machine
to staging and production database servers. This will ensure an error is
thrown in case it tries to access any of those resources. Once the upgrade
executes, the Sitefinity database is modified irreversibly (downgrade is not
supported), thus ensuring that your test project is not connected to the live
database is a must.

9. Ensure the pre-upgraded project builds and runs successfully on the local
machine.

10. Decide on an upgrade mechanism (Project Manager or NuGet packages).
Note that if the project is already using NuGet packages the upgrade needs
to be done with NuGet packages.

11. Stop the local site from IIS.
• If upgrading with Sitefinity Project Manager, and you have the project

open in Visual Studio as well, close Visual Studio. This prevents potential
lock of the Sitefinity project file (SitefinityWebApp.csproj) and ensures
that Sitefinity Project Manager can update the file if needed.

12. Empty the Sitefinity logs folder (~/App_Data/Sitefinity/Logs). You might need
to stop the site from IIS/ Visual Studio/Sitefinity Project Manager, if the run-
ning worker process has locked some of the log files and prevents you from
moving/deleting the old logs.
It’s best to have all logs generated from the time of the upgrade. That way
you can identify more easily any upgrade or post-upgrade logged errors. If
using custom logging mechanism (for example ELMAH), either stop it for
the upgrade procedure, or make sure the local application can write logs and
that they are accessible.

https://www.progress.com/
https://www.progress.com/openedge

Progress 5

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

II. Upgrade Phase

Upgrading a Sitefinity project is essentially a three-stage process:
1. Replacing the *.dll files
2. Adjusting the web.config and project references
3. Executing the upgrade scripts.

Replacing the *.dll files

Upgrade always begins with a change of the .dll files in the bin folder, containing
the compiled Sitefinity logic. Depending on the selected upgrade mechanism, re-
placing the *.dll files can happen in the following manner:

• The Sitefinity Project Manager directly replaces the existing .dll files in the /
bin folder with new ones. By default, Sitefinity references its assemblies from
the project /bin folder. If you have modified your project to reference *.dll files
from locations other than the /bin folder, once you build the project, the Visual
Studio build process will replace the newly copied *.dll files with the referenced
ones, thus overriding the upgraded assemblies. To prevent this, you must
make sure your project references its *.dll files from the /bin folder.

• The upgrade with NuGet updates the package referenced version in your
project packages.config file and restores the NuGet packages that are located
in the Sitefinity NuGet server (http://nuget.sitefinity.com/nuget). The restore
process downloads the new package versions to your ~/packages folder,
replacing the existing ones. Later the Visual Studio build process replaces the
.dll files in the /bin folder of the Sitefinity project. Keep that in mind that when
using NuGet packages to upgrade, Sitefinity is not aware of the existence of
the ~/packages folder or any other folders containing .dll files. It runs with the
files present in the project /bin folder, thus you must build the project when
using NuGet.

Adjusting the web.config and Project References
In some cases (depending on whether the version you are upgrading to requires
it), you must apply changes to the web.config file. These changes are necessary
to adjust for any new HTTP modules registrations, authentication mechanism
changes, and so on. In a nutshell, these are changes utilizing ASP.NET compatible
functionality, which are introduced in the new Sitefinity version, and must be
reflected in the web.config. They do not necessarily get introduced with each
new version, but when present they must be applied, otherwise your project will
not behave in the expected manner. To get informed about the necessary web.

https://www.progress.com/
https://www.progress.com/openedge
http://nuget.sitefinity.com/nuget

Progress 6

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

config changes for each version, refer to the Upgrade instructions in the Sitefinity
documentation (https://www.progress.com/documentation/sitefinity-cms/upgrade).

• The Sitefinity Project Manager prompts to apply these changes automatically.
You can leverage this functionality or decide to apply the changes manually
(for example if you have modified the default web.config, and want to preserve
your custom settings).

• When upgrading to Sitefinity versions 11.0 and above, NuGet takes care of
adjusting the web.config changes automatically. If upgrading to version prior
to Sitefinity 11.0, the upgrade with NuGet packages does not modify the web.
config. In case such changes are needed, you must apply them manually
when upgrading with NuGet packages. To get informed about the necessary
web.config changes for each version, refer to the Upgrade instructions in the
Sitefinity documentation (https://www.progress.com/documentation/sitefinity-
cms/upgrade).

• In some cases, a change to the project references is needed. These changes
get reflected in the SitefinityWebApp.csproj file. Such changes are necessary,
for example when the new Sitefinity version introduces a new assembly.

• The Sitefinity Project Manager prompts to apply these changes automatically.
A prerequisite for this is to have your Sitefinity project file named
SitefintiyWebApp.csproj (the default name). If you have renamed your project
file, the Sitefinity Project Manager will not be able to find it and cannot apply
the changes automatically. You can leverage this functionality or decide to
apply the changes manually.

• When upgrading with NuGet packages to Sitefinity versions 11.0 and later, the
Sitefinity NuGet packages execute scripts to automatically adjust the project
references. Similar to the Sitefinity Project Manager, in order for the NuGet
packages script to automatically update your project references, you must
have your Sitefinity project file named SitefintiyWebApp.csproj (the default
name). If you have renamed your project file, the Sitefinity NuGet packages
scripts will not be able to find it and cannot apply the changes automatically. If
upgrading to a version prior to Sitefinity 11.0, these changes need to be done
manually before upgrading the NuGet packages.

Addressing any API Breaking Changes in Your Code
Although not it’s not officially considered a stage of the upgrade process,
addressing the API breaking changes is of equal importance. Now that you have
replaced the Sitefinity *.dll files and adjusted the web.config and project references,

https://www.progress.com/
https://www.progress.com/openedge
https://www.progress.com/documentation/sitefinity-cms/upgrade
https://www.progress.com/documentation/sitefinity-cms/upgrade
https://www.progress.com/documentation/sitefinity-cms/upgrade

Progress 7

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

you are ready to run your upgraded website for the first time. When you run the
website, it will be using the new Sitefinity compiled logic. If you have extended your
Sitefinity website using the Sitefinity API, you must check whether any of the APIs
you are using have been changed. You can do that by going to the API changes in
Sitefinity CMS page and reviewing all changes that apply to the versions between
your pre-upgrade Sitefinity version, and the version you are upgrading to.

It’s important to address any API breaking changes, apply any necessary binding
redirects, and so on, prior to running your upgraded project for the first time.
When you run the project for the first time the Sitefinity upgrade scripts take
care of upgrading the database schema and configurations. If any runtime errors
occur, due to API changes, this might disrupt the upgrade process and leave the
database in an incomplete state. If this happens, you must apply the necessary
changes in your code, restore the database to the point prior the upgrade and
start the project, so the upgrade scripts can execute successfully.

Executing the Upgrade Scripts

The final stage of the upgrade process is to make the database schema and con-
figurations upgrade. When the Sitefinity version you are upgrading to introduces
changes in the persistence model or different default configurations, it ships with
specific upgrade scripts as part of the responsible system modules. When you
have successfully completed the replacing of the *.dll files and modifying the web.
config and project references, you must build and run your site. At this point your
site will be running with the new version of the compiled code. Once it runs for
the first time with the upgraded assemblies, Sitefinity CMS checks the version of
each module in the system and detects (from the information stored in the data-
base schema and configuration files) which modules are running on an older ver-
sion and need to be upgraded. Each Sitefinity module that needs to be upgraded
runs its upgrade scripts, modifies the database schema, and finally updates its
entry in the database and configuration files to indicate that it’s now running on
the new version.

Summary of the Upgrade phase

In summary, here are the steps you must take to complete the upgrade process:

1. Make the “physical” upgrade on the local environment.
• Using the Sitefinity Project manager, right-click on the desired project

and select the Upgrade option form the context menu
• By running Update-Package Telerik.Sitefinity.All -Version [TargetVersion]

in the VS Package Manager console

https://www.progress.com/
https://www.progress.com/openedge
https://www.progress.com/documentation/sitefinity-cms/api-changes-in-sitefinity-cms
https://www.progress.com/documentation/sitefinity-cms/api-changes-in-sitefinity-cms

Progress 8

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

2. Perform any additional steps, such as modifying the web.config file and/or
project references, if needed.

3. Fix any code that needed changing due to breaking changes between the
versions.

4. Build the project, verify it builds successfully.
5. Along the process, reference the upgrade troubleshooting section in the

documentation: https://www.progress.com/documentation/sitefinity-cms/
troubleshooting-upgrades

6. Run the project to make the upgrade scripts execute.
7. Apply the new license.

III. Confirmation and Testing Phase

This phase is important as it helps capturing any unexpected project behavior,
runtime errors, and so on.

1. Make sure, the frontend of the site looks and feels the same, there are no
obvious differences.

2. Make sure you can successfully log in to the backend.
3. Check the Administration -> Modules & Services page for any failed modules.
4. Check the Sitefinity logs. Pay special attention to the UpgradeTrace.log and

check if there are any records indicating failed operation.

IV. Deployment Phase

1. Finally, you must decide on a deployment approach. You can either deploy
the upgraded project files and restore the upgraded database on the
target environment, or deploy just the project files and have the upgrade
scripts execute and modify the live database automatically on the target
environment.

• Deploying the upgraded project files and restoring the upgraded
database is the safer option, as you’re deploying a copy of the setup
you’ve already tested thoroughly. However, this option requires
introducing content freeze from the moment you get the project locally
and begin the upgrade process. Any changes after that will be lost.
Alternatively, allow content updates for the first three phases, then
freeze it, get another copy of the database, re-upgrade it locally and
continue with the deployment. Additionally, any live content generation,
taking place from the moment you back up the database for upgrade,
to the moment you restore the upgraded database will be lost. Such
changes may include user data input, such as forms, forum posts,
comments, and so on.

https://www.progress.com/
https://www.progress.com/openedge
https://www.progress.com/documentation/sitefinity-cms/troubleshooting-upgrades
https://www.progress.com/documentation/sitefinity-cms/troubleshooting-upgrades

©
 2

01
9

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

© 2019 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2019/01 | RITM0034642

About Progress

Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying strategic business applications. We enable customers

and partners to deliver modern, high-impact digital experiences with a fraction of the effort, time and cost. Progress offers powerful

tools for easily building adaptive user experiences across any type of device or touchpoint, award-winning machine learning that enables

cognitive capabilities to be a part of any application, the flexibility of a serverless cloud to deploy modern apps, business rules, web content

management, plus leading data connectivity technology. Over 1,700 independent software vendors, 100,000 enterprise customers, and two

million developers rely on Progress to power their applications. Learn about Progress at www.progress.com or +1-800-477-6473.

Learn More

• Deploying just the project files will mean no content freeze is required
as the upgrades scripts will execute against the target environment
database. The downside is that the target environment will be down for
a longer period and if any unexpected issues, caused by the difference
in database content arise, they must be resolved fast, under greater
pressure.

2. Plan for a deployment window. Ideally, deployment should be done during
times of no or low(er) traffic to the site. This way you ensure ample time for
the deployment and resolving any issues after that.

3. Perform the deployment.

https://www.progress.com/
https://www.progress.com/sitefinity-cms
https://www.progress.com/odata/ibm-db2
https://twitter.com/ProgressSW
http://www-01.ibm.com/support/docview.wss?uid=swg1PI66828
http://www-01.ibm.com/support/docview.wss?crawler=1&&uid=swg1PI70652

